CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下: 4.部分核心程序 1 2 3 4 5 ...
PSO优化CNN-LSTM做预测,即PSO-CNN-LSTM。 优化的是隐藏层单元数目,初始学习率等网络参数。 预测精度要高于CNN-LSTM。 ID:47150678170005403
在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。 CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相...
基于粒子群优化(Particle Swarm Optimization, PSO)的卷积神经网络-长短期记忆网络(Convolutional Neural Network - Long Short-Term Memory, CNN-LSTM)模型在时间序列回归预测中,结合了深度学习的强大表达能力和优化算法的高效搜索能力,为复杂时间序列数据的预测提供了一种强有力的解决方案。 4.1卷积神经网络(CNN) CNN...
简介:**算法预览图省略**- **软件版本**: MATLAB 2022a- **核心代码片段**略- **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。- **CNN**利用卷积捕获时间序列的空间特征。- **LSTM**通过门控机制处理长序列依赖,避免梯度问题。- **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM...
Compared with the traditional single prediction model and some existing combined prediction models, the errors of root mean square, mean absolute and mean percentage in the predicted results of the CNN-LSTM-PSO model are lower than that of other models. The experimental results s...
CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下: ...
CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下: ...
CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下: ...
简介:**算法预览图省略**- **软件版本**: MATLAB 2022a- **核心代码片段**略- **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。- **CNN**利用卷积捕获时间序列的空间特征。- **LSTM**通过门控机制处理长序列依赖,避免梯度问题。- **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM...