但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适...
但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适...
但是传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适...
由图3可知,在MPSO-BP-PID控制器工作过程中,第一步是由MPSO算法优化BP神经网络。在此过程中MPSO算法结合PID控制对象的控制误差error(k)对神经网络的隐含层权值wij及输出层权值woj进行优化更新,从而为BP神经网络提供优化过的权值,得到PID最优化的控制参数kp,ki,kd;第二步,在控制参数的作用下,由PID控制器输出最优...
本设计正是利用BP神经网络PID控制器对一个单闭环调速系统进行仿真研究,并和常规的PID控制进行对比,从而得出BP神经网络PID控制器具有较强的自整定、自适应的优点。
BP神经网络比例积分微分控制温度预测注塑机提出了一种基于粒子群优化(PSO)算法,BP神经网络及比例积分微分(PID)控制的复合算法的注塑机料筒温度预测模型,即PSO-BP-PID神经网络模型,并进行了仿真研究.结果表明:使用PSO算法确定该模型的输出权重,并且对混合核函数参数进行优化升级;在模型训练过程中,使用更大的容许度处理...
一、PSO-BP神经网络原理PSO-BP神经网络是一种结合了粒子群优化(Particle Swarm Optimization,简称PSO)和反向传播(Back Propagation,简称BP)神经网络的优化算法。该算法通过PSO的全局搜索能力找到最优解,再利用BP神经网络对问题进行精细调整,从而得到更精确的结果。PSO-BP神经网络模型中的参数主要包括粒子群个数、惯性...
以下是一个用 MATLAB 实现的基本粒子群优化(PSO)和 BP 神经网络的分类器。这个例子是假设有四个输入变量,两个输出变量,训练数据包含 m 个样本,每个样本包含四个输入变量和两个输出变量。备注都有详细说明。 ``` % --- % 初始化参数 % --- % 设定神经网络的参数...
PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力 BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。 数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x','x')[-5,5]进行采样,得到30组训练数据,拟合该网络。
基于PSO 算法和BP 神经网络的PID 控制研究 段艳明 (河池学院计算机与信息工程学院,广西宜州546300)摘 要:针对PID 控制中的参数整定的难点及基本BP 算法收敛速度慢㊁易陷入局部极值的问题,提出利用PSO 算法的全局寻优能力和较强的收敛性来改进BP 网络的权值调整新方法,从而对PID 控制的比例㊁积分㊁微分进行优化...