img1,img2):mse=nn.functional.mse_loss(img1,img2)psnr=20*torch.log10(self.max_val/torch.sqrt(mse))return-psnr# 为了实现最小化,我们返回负的PSNR# 示例:使用PSNR损失函数if__name__=="__main__":img1=torch.rand
为了方便使用,我们将创建一个损失类,继承自nn.Module。 classPSNRLoss(nn.Module):def__init__(self,max_value:float=1.0):super(PSNRLoss,self).__init__()self.max_value=max_valuedefforward(self,target:torch.Tensor,output:torch.Tensor)->float:returncalculate_psnr(target,output,self.max_value) 1....
多指标联合优化:在PSNR基础上,结合SSIM或感知损失(Perceptual Loss)训练模型。 七、总结 PSNR是图像质量评估的经典工具,但其局限性要求结合主观评价或其他指标。在学术研究、工程实践中,需根据具体场景选择指标组合,例如视频编码侧重PSNR与码率权衡,医学图像分析则需关注局部结构保真度。
学习感知图像块相似度(Learned Perceptual Image Patch Similarity, LPIPS)也称为“感知损失”(perceptual loss),用于度量两张图像之间的差别。来源于CVPR2018的一篇论文《The Unreasonable Effectiveness of Deep Features as a Perceptual Metric》,该度量标准学习生成图像到Ground Truth的反向映射强制生成器学习从假图像中...
LPIPS(Learned Perceptual Image Patch Similarity),也称为“感知损失”(perceptual loss),用于度量两张图像之间的差别。来源于CVPR2018的一篇论文《The Unreasonable Effectiveness of Deep Features as a Perceptual Metric》,该度量标准学习生成图像到Ground Truth的反向映射强制生成器学习从假图像中重构真实图像的反向映射...
kornia.losses.ssim_loss 计算预测图像和目标图像之间的SSIM。encoded_images.detach() 同样表示在计算SSIM时不计算梯度。window_size=11 定义了用于计算SSIM的窗口大小。reduction="mean" 表示损失将在所有元素上平均。1 - 2 * ... 是因为kornia的ssim_loss返回的是1减去SSIM的值,所以这里通过乘以2并减去1来得到...
LPIPS(Learned Perceptual Image Patch Similarity),也称为“感知损失”(perceptual loss),用于度量两张图像之间的差别。来源于CVPR2018的一篇论文《The Unreasonable Effectiveness of Deep Features as a Perceptual Metric》,该度量标准学习生成图像到Ground Truth的反向映射强制生成器学习从假图像中重构...
[-1, 1, 1]), axis=0) # level 相乘 print(ms_ssim_val.shape) if size_average: return ms_ssim_val.mean() else: # 返回各个channel的值 return ms_ssim_val.flatten(2).mean(1) class SSIMLoss(paddle.nn.Layer): """ 1. 继承paddle.nn.Layer """ def __init__(self, window_size=11...
rajatdv / SuperResolution-with-Perceptual-loss Star 19 Code Issues Pull requests In this project I have used an convolution neural network with perceptual loss to convert low res image into high res image. python tensorflow keras cnn vgg16 ssim psnr superresolution perceptualloss Updated Oct ...
ssim_values = [] lpips_loss = lpips.LPIPS(net='vgg').cuda() lpips_loss.eval() lpips_values = [] for file1, file2 in zip(sorted(os.listdir(folder1)), sorted(os.listdir(folder2))): image1 = Image.open(os.path.join(folder1, file1)) ...