3. index function by derivative (1) y=a^x, y'=a^xlna (2) by y=e^x y'=e^x; only a guide function for itself function logarithmic function (1) y=logaX 4. y'=1 (a>0, /xlna and a is not equal to 1, x>0) by y=lnx, y'
byderivative(1)y=a^x,y'=a^xlna(2)byy=e^xy'=e^x;onlyaguidefunctionforitselffunctionlogarithmicfunction(1)y=logaX4.y'=1(a>0,/xlnaandaisnotequalto1,x>0)byy=lnx,y'=1/x5.;sinefunctiony=(SiNx)y'=cosxy=(cosx)6.cosinefunctiony'=-sinx7.(TaNx)y'=1/tangentfunctiony=(cosx)^28...
Let us determine the derivative of tan2x using the chain rule. d(tan2x)/dx = d(tan 2x)/d(2x) × d(2x)/dx = sec22x × 2 = 2 sec2(2x) Now, we will determine the integral of tan2x. We know that the integral of tan x is -ln |cos x| + C or ln |sec x| + C. ...
Now, we know that the derivative of cos(ax) is equal to -a sin(ax). Therefore, we have d(2 sin6x sin7x)/dx = d(cosx - cos13x)/dx = d(cosx)/dx + d(cos13x)/dx = -sinx + 13 sin13x Answer: The derivative of 2 sin6x sin7x is -sinx + 13 sin13x 2SinASinB Practice...
The important formulas of sin 2x is sin 2x = 2 sin x cos x and sin 2x = (2tan x)/(1 + tan2x) The formula for sin2x is sin2x = 1 - cos2x and sin2x = (1 - cos 2x)/2 ☛ Related Articles: Derivative of Sin 2x Integral of Sin 2x and Sin^2x Derivative of Cos2x ...
The derivative of sec^2x is equal to 2 sec^2x tanx. It is mathematically written as d(sec^2x)/dx = 2 sec2x tanx.