换言之, Y 中的元素各不相同且均大于等于1 且 小于等于(p-1); 所以集合X等于集合Y, 顺序不一定一样, 集合X所有元素的乘积必然等于集合Y所有元素的乘积: 两边模 p : 由于(p-1)! 不能被p整除, 所以 证毕 (若有误,望指正)
Burnside’sLemmaActionInvariantSetWe present an intuitively satisfying geometric proof of Fermat's result for positive integers that a p-1 ≡ 1 for prime moduli p, provided p does not di- vide a. This is known as Fermat's Little Theorem. The proof is novel in using the idea of coloring...
Fermat's Little TheoremTwelve participants were asked to decode – that is, interpret and make sense of – a given proof of Fermat's Little Theorem, and present it in a form of a script for a dialog between two characters of their choice. Our analysis of these scripts focuses on issues ...
解费尔马大定理(Fermat's Last Theorem)真正奇妙的证明(truly marvelous Proof)之谜(2014完整版) 广义无穷递降法单位圆三角形的高无理数算术基本定理代数基本定理... 沈逸轩,黄永茂 - 《数学学习与研究》 被引量: 0发表: 2015年 费尔马最后定理的证明 (i)我们用(x-b)n+xn=(x+a)来代替xn+yn=zn作为费尔...
费马大定理,也称费马最后定理(法语:Le dernier théorème de Fermat), 的整数解都是平凡解,以上陈述由17世纪法国数学家费马提出,一直被称为“费马猜想”,直到英国数学家安德鲁·怀尔斯(Andrew John Wiles)及其学生理查·泰勒(Richard Taylor)于1995年将他们的证明出版后,才称为“费马大定理”。这个猜想最初出现费马...
The prime numbers play a central role in the theory of numbers. We show that Fermat's theorem on primes may be proved using symmetry properties of Ising-spin configurations; and that similarly this may be extended to certain composite numbers. Our method of proof suggests a ''physical'' inte...
“ 真正奇妙 的证 明” 作 了如下表述. 业余数 学家之王——法国人费尔马 ( Fermat,1601 ~ 1665 ) 大约在 1637 年在古希腊名著“ 算术 ”一 书空白处记 了 两段笔记.提 出方程( 1) + Y = z 当正整 数 N > 2 无正整 数解 ,当时费尔马在 书页边 还写道 :“我 已经找 到这个 命题 ...
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers x, y, and z satisfy the equation z = x y for any integer value of greater than two. The case = 2James E. Joseph...
aFor hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible...
proves that Fermar''s last theorem is completely correct. Key words: Fermat indefinite equation, functional equation decomposition, symmetric substitution, prime number principle, proof by contradiction. I. Introduction Around 1637, the French scholar Fermat, while reading the Latin translation of Dioph...