Prompt Tuning是一种PEFT方法(Parameter-Efficient FineTune),旨在以高效的方式对LLM模型进行下游任务适配,本文简要介绍Prompt Tuning方法,希望对读者有所帮助。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注明出处,谢谢。 ∇联系方式: ...
本篇论文可以看成是prefix-tuning的简化版,一方面文中实验证明了使用自动生成的soft prompt方法进行tuning的效果跟model tuning差不多,同时超过了人工设计的prompt。 另一方面,文中对model tuning和prompt tuning做了如下图的对比,prompt tuning可以大幅节省参数量。对于T5的XXL的model来说,全量的model tuning每个下游任务...
• Prefix-Tuning• Prompt-Tuning• P-Tuning• P-Tuning-v2 CV中基于Prompt的fine-tuning 分类 Visual Prompt Tuning[8]Visual Prompt Tuning • VPT-Shallow • VPT-Deep VPT Results 持续学习 Learning to Prompt for Continue Learning[9]引入一个 prompt pool,对每个 input,从 pool 中取出与其...
大模型高效微调Prompt Tuning论文解读 原文题目:The Power of Scale for Parameter-Effificient Prompt Tuning,规模的力量:参数高效的提示调整 摘要:在这项工作中,我们探索了“提示调整”(prompt tuning),这是一种简单但有效的机制,用于学习“软提示”(soft prompts),以调节冻结的语言模型,使其执行特定的下游任务。与...
论文解读:Knowledgeable Prompt-tuning: Incorporation Knowledge into Prompt Verbalizer for Text Classification 在预训练语言模型上使用与任务相关的prompt进行微调已经成为目前很有前途的方法。先前的研究表明了在小样本场景下采用基于prompt-tuning的效果比传统通过添加分类器的微调更有效。Prompt的核心思想是添加额...
论文链接:https://arxiv.org/pdf/2104.08691.pdf Prompt-Tuning可以认为是Prefix Tuning的一个简化。主要使用T5模型做实验。 光使用prompt进行few/one/zero-shot学习,效果远远不如tuning。而prompt的自动化设计也有尝试,例如Shin et al(2020)通过下游应用训练数据,用搜索方法找出离散的词空间。
Prompt-Tuning自从GPT-3被提出以来,从传统的离散、连续的Prompt的构建、走向面向超大规模模型的In-Context Learning、Instruction-tuning和Chain-of-Thought。 自从GPT、EMLO、BERT的相继提出,以 Pre-training + Fine-tuning 的模式在诸多自然语言处理(NLP)任务中被广泛使用,其先在 ...
论文解读:P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks P-tuning等方法的提出,避免了人工构建离散的template,而让模型可以自动学习continuous embedding,然而P-tuning在一些复杂的自然语言理解(Natural Langauge Understanding, NLU)任务上效果很差。因此本文基...
论文:CPT:Colorful Prompt Tuning for Pre-Training Vision-Language Models 状态:Work in Progress 单位:清华大学、新加坡国立大学 链接:https://arxiv.org/pdf/2109.11797.pdf 提取摘要 预训练的视觉语言模型 (VL-PTMs) 在将自然语言融入图像数据中显示出有前景的能力,促进了各种跨模态任务。
Google Research在2021年的论文《Finetuned Language Models Are Zero-Shot Learners》中提出了instruction-tuning。Google认为instruction-tuning是一种简单的方法来提高语言模型的zero-shot学习能力。指令微调的动机是提高语言模型对自然语言处理指令的响应能力。这个想法是,通过使用监督来教授语言模型执行通过指令描述的任务...