P-tuning和Prompt-tuning的区别: P-Tuning在输入的时候加入embedding,并通过LSTM或MLP初始化,且位置不固定,后续的版本中在每个层也都加了embedding,而prompt-tuning值在输入加上虚拟的token来学习,还不是自由参数形式。 参考:[1] zhuanlan.zhihu.com/p/68 [2] zhuanlan.zhihu.com/p/72 ...
Prompt-tuning就更加有信服力一些,纯凭Prompt撬动了大模型。 Prompt-tuning给每个任务定义了自己的Prompt,拼接到数据上作为输入,同时freeze预训练模型进行训练,在没有加额外层的情况下,可以看到随着模型体积增大效果越来越好,最终追上了精调的效果: 同时,Prompt-tuning还提出了Prompt-ensembling,也就是在一个batch里同时...
- Prefix Tuning为模型添加可训练的、任务特定的前缀,为不同任务保存不同的前缀,减少微调成本并节省存储空间。- Prompt Tuning在输入数据中添加可学习的嵌入向量作为提示,引导模型生成特定类型输出,节省微调资源。- P-Tuning使用一个可训练的LSTM模型动态生成虚拟标记嵌入,提供高灵活性和适应性。- P-T...
本文链接:https://www.cnblogs.com/marsggbo/p/18276977 关于博主:评论和私信会在第一时间回复。或者直接私信我。 版权声明:私信联系获得许可后方可转载文章。 声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。 marsggbo 粉丝-541关注 -4 ...
Prompt Tuning的优点在于简单易行且效果好,能够快速适应不同的任务和数据集。然而,Prompt Tuning也存在一定的缺点,例如提示的设计需要手动调整且提示的质量会对微调效果产生影响。应用场景:适用于各种需要添加提示信息的NLP任务,如问答系统、对话系统和文本生成等。综上所述,Prefix Tuning、LoRA、P-Tuning和Prompt Tuning...
P-tuning是prompt tuning的一种改进,软prompt可训练,但通过prompt encoder间接训练,以学习prompt token之间的关系。此外,prompt可以插入输入的任意位置。简单实现涉及定义软prompt、选择初始化策略、控制虚拟token数量,并设计适合任务的训练目标。在训练后,保存特定的软prompt以供未来任务使用,从而提高生成...
然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA (Learned Representations for Finetuning)L 过拟合 初始模型 数据集 大模型微调方法总结:LoRA, Adapter, Prefix-...
P-tuning和Prompt-tuning是两种基于提示的微调方法。P-tuning方法通过向模型输入提示信息来指导模型进行预测,而Prompt-tuning方法则通过在输入数据中嵌入提示信息来调整模型的行为。这两种方法都利用了模型对提示信息的敏感性,通过修改提示信息来改变模型的行为,从而实现微调。