2)Few-Shot 提供少量示例,比如1-3个辅助大模型理解。 3)Zero-Shot 不提供示例,让模型直接回答问题。 这一部分也通常称为ICL(In-Context Learning)上下文学习。通常来讲Zero-Shot场景是对模型性能要求最高的,也是各家大模型的优化重点。GPT4相比GPT3.5很明显的能力提升就在于它在Zero-Shot场景下的性能,这往往也...
Prompt learning 教学[进阶篇]:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人 1.ChatGPT Prompt Framework 看完基础篇的各种场景介绍后,你应该对 Prompt 有较深的理解。之前的章节我们讲的都是所谓的「术」,更多地集中讲如何用,但讲「道」的部分不多。
考虑到所有这些因素,Few-Shot Prompting 可能很难有效实施。现在,作者研究了在监督环境中进行 Few-Shot Prompting 的技术。集成方法也可以使 Few-Shot Prompting 受益,但我们单独讨论它们(第 2.2.5 节)。 假设我们有一个训练数据集 ,其中包含多个输入 和多个输出 ,对GenAI进行few-shot prompt而不是梯度更新。假设...
37. Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models 2021 2021.6.24 motivation: 在few-shot learning 场景下,通过微调 transformer 中的 bias,超过 full-model finetuning(全量参数),节省参数存储,另外提出 null prompt,效果接近略差于有 prompt 效果。 38. Multimodal Few...
Prompt learning 教学[进阶篇]:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人 1.ChatGPT Prompt Framework 看完基础篇的各种场景介绍后,你应该对 Prompt 有较深的理解。之前的章节我们讲的都是所谓的「术」,更多地集中讲如何用,但讲「道」的部分不多...
Prompt learning 教学[进阶篇]:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人 1.ChatGPT Prompt Framework 看完基础篇的各种场景介绍后,你应该对 Prompt 有较深的理解。之前的章节我们讲的都是所谓的「术」,更多地集中讲如何用,但讲「道」的部分不多...
在GPT3中大放异彩的In-Context learning本质上也属于Prompt,而且是hard Prompt,GPT3中通过给一些提示(zero-shot),或者给一些训练数据(few-shot)作为前缀提示,就能在很多任务上取得sota的效果,这也说明大模型在给定一些提示下能涌现出能处理下游任务的能力。
因此,基于上述理念,Prompt时代带给NLP最大的增益之一就是:提升了小样本(few-shot)学习能力。 然而,Prompt不是万能的,不同的Prompt会导致模型性能的千差万别,同时绝大数的研究工作更聚焦于具体的几个NLP任务数据集,Prompt learning与特定任务和特定模型有关,没有在更广泛数据集上进行few-shot甚至zero-shot评测,没有...
近两年,视觉语言模型 (VLM) 逐渐兴起,并在小样本学习 (Few-shot Learning) 和零样本推理 (Zero-shot Inference) 上取得了令人注目的成果。那么这些在自然图像上取得成功的大规模预训练视觉语言模型,是否能成功应用到医疗领域呢? 抱着这样的疑问,四川大学华西生物医疗大数据中心人工智能和医疗机器人实验室,华西医院-...
Prompt learning 教学[进阶篇]:简介Prompt框架并给出自然语言处理技术:Few-Shot Prompting、Self-Consistency等;项目实战搭建知识库内容机器人 1.ChatGPT Prompt Framework 看完基础篇的各种场景介绍后,你应该对 Prompt 有较深的理解。之前的章节我们讲的都是所谓的「术」,更多地集中讲如何用,但讲「道」的部分不多...