Principal component analysisis widely applied to the multivariate calibration. 主成分分析是全光谱分光光度分析中常用的校正方法. 互联网 Soil fertility could be evaluated objectively byprincipal component analysis. 土壤主成分分析能较为客观地评价土壤肥力水平. ...
主成分分析(principal component analysis,PCA)是一种常用的无监督学习方法,这一方法利用正交变换把由线性相关变量(对于含两个向量 a1,a2 的向量组,它线性相关的充分必要条件是 a1,a2 的分量对应成比例,其几何意义是两向量共线)表示的观测数据转换为少数几个由线性无关变量表示的数据,线性无关的变量(特征)称为主...
一、PCA降维原理 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。在信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好,因此我们认为,最好的k维特征是将n维样本点转换为k维后,每一维上的样本方差都很大,并且每一维的数据不相关。 1...
principal component analysis 美 英 un.主分量分析 网络主成分分析;主成分方法;主要成份分析 英汉 网络释义 un. 1. 主分量分析 1. It utilizesprincipalcomponentanalysismethodtodetermineindexweightandchoosesYellow RiverDeltaas a case ofdemonstration.
数据科学——主成分分析(Principal Component Analysis, PCA)主成分分析是一种统计方法,用于简化数据集的维度,同时尽可能保留原始数据的变异性。它通过正交变换将原始数据转换为一组统计上不相关的变量,称为主成分。这些主成分按方差的大小排序,方差越大,表示该主成分能够解释更多的原始数据的变异性。主成分分析(...
principal component analysis 主成分分析(PrincipalComponentAnalysis,简称PCA)是一种在数据挖掘中比较常用的统计分析技术,它可以将大量的变量进行综合考虑,用少量的几个主要组件来代表原变量的总体信息,从而简化数据分析过程,有助于结果的准确性。 1、PCA背景介绍 主成分分析(Principal Component Analysis)作为多元统计分析...
PCA(principal component analysis)是一种应用广泛的降维算法,其基本思想是想通过找到一个低维的“最具有代表性”的方向,并将原数据映射到这个低维空间中去,从而实现数据的降维。 1. 算法原理 我们先从二维数据简单说明,假设我们有n个二维数据组成的数据集Dn×2(如图),现在我们想要将其映射到一维空间,并且...
沪江词库精选principal component analysis是什么意思、英语单词推荐 主元件分析,主成分分析 相似短语 principal component analysis 主元件分析,主成分分析 principal component 主分量 two stage principal component method 两段主分量法 principal to principal transaction 【经】 货主与货主间的交易 component ...
主成分分析(Principal Component Analysis, PCA)是一种常用的数据分析技术,主要用于数据降维和特征提取。 PCA通过线性变换将原始数据投影到新的坐标轴上,这些新的坐标轴(即主成分)是数据的线性组合,并且彼此正交(相互独立)。PCA的目标是找到数据的“主方向”,即数据分布的最大方差方向,从而保留数据的最多信息。
PCA: Principal Components Analysis,主成分分析法原理 1、引入 PCA算法是无监督学习专门用来对高维数据进行降维而设计,通过将高维数据降维后得到的低维数能加快模型的训练速度,并且低维度的特征具有更好的可视化性质。另外,数据的降维会导致一定的信息损失,通常我们可以设置一个损失阀值来控制信息的损失。