代码部分把prefix tuning和P-tuning v2放在一起写(Hugging face官方库也是合在一起的),因为virtual token是插入进每一层的,那么需要重点关注的是他是怎么进入每一层的: 本质上是通过past_key_values进入attention运算内部,在每一层中运算的。 这里先列出Hugging face 原生库中怎么实现的,然后再写一段仿真代码便于...
peft代码解读:Prefix Tuning、LoRA、P-Tuning、Prompt Tuning 随着科技的发展,软件和硬件的性能不断提升,编码技术也日益重要。Peft代码解读是一种用于优化编码技术的工具,它可以帮助我们更好地理解和改进编码过程,提高程序性能。在本文中,我们将重点介绍Peft代码解读中的Prefix tuning、LoRA、P-Tuning和Prompt Tuning等关...
Prefix Tuning:Prefix-Tuning: Optimizing Continuous Prompts for Generation,P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks P-Tuning:GPT Understands, Too Prompt Tuning:The Power of Scale for Parameter-Efficient Prompt Tuning AdaLoRA:Adaptive Budget Allocati...
Prefix Tuning / P-Tuning v2是一种基于预训练模型微调的方法,其主要思想是在模型训练过程中,通过在输入序列的前面添加特定的前缀(prefix)来引导模型的学习方向。这种方法可以帮助模型更好地理解任务特定的问题,从而提高模型的性能。下面我们通过一个简单的例子来演示Prefix Tuning / P-Tuning v2的实现过程。假设我们...
Prefix Tuning 是一种自然语言处理(NLP)模型调优技术,可以用于微调大型预训练语言模型,以适应特定的自然语言处理任务。下面是一个使用 Prefix Tuning 的代码示例: python复制代码 importtorch fromtransformersimportAutoTokenizer, AutoModelForSequenceClassification fromprefix_tuningimportPrefixTuning # 加载预训练模型和分词...
Prefix Tuning代码探索 prefix_tuning.py importtorchfromtransformersimportPretrainedConfigclassPrefixEncoder(torch.nn.Module):r''' The torch.nn model to encode the prefix Input shape: (batch-size, prefix-length) Output shape: (batch-size, prefix-length, 2*layers*hidden)...
随后,添加了30个虚拟令牌,实现了前缀调优(prefix tuning)。该过程创建了一个新模型,其中仅"prompt_encoder"模块可训练,其余模块参数冻结。接着,进行模型训练并保存,准备测试,最终生成预测结果。整个过程涉及模型生成、参数优化、预测和评估等关键步骤,最终实现以高效方式微调大型模型的目的。通过PEFT...
论文解读:Prefix-Tuning: Optimizing Continuous Prompts for Generation &emps;本文我们提出一种prefix-tuning方法,其是一个轻量级的fine-tuning方法用于自然语言处理的生成任务。该方法可以保持预训练语言模型参数固定(frozen),而只需要在task-specific vector(称为prefix)上进行优 自然语言处理 深度学习 人工智能 Prompt...
· [本科项目实训] P-tuning v2技术介绍, Prompt设计与尝试 · Prefix Tuning代码探索 阅读排行: · DeepSeek 全面指南,95% 的人都不知道的9个技巧(建议收藏) · 自定义Ollama安装路径 · 本地部署DeepSeek · 快速入门 DeepSeek-R1 大模型 · DeepSeekV3+Roo Code,智能编码好助手 Prompt...
P-tuning的核心在于使用MLP和LSTM对virtual token进行编码,以克服预训练模型词嵌入离散性带来的问题。代码实现上,包括简易版和官方库的版本,都展示了如何处理模板设计、数据构造以及只训练virtual token部分权重的过程。总结来说,P-tuning在自动模板构建中展现出优势,关键点包括处理virtual token的方式、...