Causal LM是因果语言模型,目前流行地大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下...
Causal LM是因果语言模型,目前流行的大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下...
Prefix LM(前缀语言模型):在输入序列的开头添加一个可学习的任务相关的前缀,然后使用这个前缀和输入序列一起生成输出。这种方法可以引导模型生成适应特定任务的输出。 Causal LM(因果语言模型):也称为自回归语言模型,它根据之前生成的 token 预测下一个 token。在生成文本时,模型只能根据已经生成的部分生成后续部分,不...
解码方式:Prefix LM可以采用非自回归解码,即并行生成所有词;Causal LM则采用自回归解码,即一个词接一个词地生成。 上下文利用:Prefix LM在生成时可以利用到更全面的上下文信息,而Causal LM则只能利用到已经生成的文本作为上下文。 四、选择建议: 如果任务需要模型理解并基于完整的上下文信息生成文本,Prefix LM可能是更...
Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下Causal LM的Attention Mask机制(左)及流转过程(右)。 Ps(图真是个好东西,一图胜万字呀) ...
因此,消遣了多半天,从原理及出处,交出了Prefix LM和Causal LM两者区别的更为清楚的说明。 2. Prefix LM Prefix LM,即前缀语言模型,该结构是Google的T5模型论文起的名字,望文知义来说,这个模型的”前缀”有些内容,但继续向前追溯的话,微软的UniLM已经提及到了。
站长之家(ChinaZ.com)8月15日 消息:近期的研究发现,在上下文学习中,基于Transformer的前缀语言模型(prefixLM)表现更优于因果语言模型(causalLM),然而目前仍缺乏这一差异的理论解释。本文采用理论分析和实验验证,揭示了前缀语言模型和因果语言模型在上下文学习中的性能差异,并证明了前缀语言模型在收敛行为和优化解上的优...
Prefix LM(前缀语言模型)和Causal LM(因果语言模型)是两种不同类型的语言模型,它们的区别在于生成文本的方式和训练目标。 1. Prefix LM:前缀语言模型是一种生成模型,它在生成每个词时都可以考虑之前的上下文信息。在生成时,前缀语言模型会根据给定的前缀(即部分文本序列)预测下一个可能的词。这种模型可以用于文本生成...
Prefix LM(前缀语言模型)和Causal LM(因果语言模型)是两种不同类型的语言模型,它们的区别在于生成文本的方式和训练目标。 Prefix LM:前缀语言模型是一种生成模型,它在生成每个词时都可以考虑之前的上下文信息。在生成时,前缀语言模型会根据给定的前缀(即部分文本序列)预测下一个可能的词。这种模型可以用于文本生成、机...
Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下Causal LM的Attention Mask机制(左)及流转过程(右)。 Ps(图真是个好东西,一图胜万字呀) ...