Causal LM是因果语言模型,目前流行的大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下...
Causal LM是因果语言模型,目前流行地大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下...
Prefix LM的代表模型有UniLM、T5、GLM(清华滴~) 3. Causal LM 了解了Prefix LM后,再来看Causal LM就简单的多了~ Causal LM是因果语言模型,目前流行的大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive...
Causal LM是因果语言模型,目前流行的大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下...
针对不同的模型结构,需要构造不同的 Prefix: 针对自回归架构模型:在句子前面添加前缀, 得到 z = [PREFIX; x; y],合适的上文能够在固定 LM 的情况 下去引导生成下文(比如:GPT3 的上下文学习)。 针对编码器-解码器架构模型:Encoder 和 Decoder 都增加了前缀,得到 z = [PREFIX; x; PREFIX0; y]。Encoder ...
(上):针对表格描述(Table-to-text)、文章总结(Summarization)、翻译(Translation)三种任务,Fine-Tuning需微调三个LM,且需保存每个特定任务的LM参数,臃肿和低效;(下):然而,Prefix Tuning要清爽得多,针对三类任务,只需训练三个Prefix生成器,原LM参数可直接复用。
在知识探测任务中,默认是固定LM只微调prompt。效果上P-tuning对GPT这类单项语言模型的效果提升显著,显著优于人工构建模板和直接微调,使得GPT在不擅长的知识抽取任务中可以基本打平BERT的效果。 针对SuperGLUE作者是做了LM+Prompt同时微调的设定。个人对LM+prompt微调的逻辑不是认同,毕竟1+1<2,同时微调它既破坏了预训...
这是因为合适的上文能够在fixed LM的情况下去引导生成下文(比如GPT3的 in-context learning),对Encoder-Decoder模型来说,Encoder和Decoder都增加了前缀,得到 这是因为Encoder端增加前缀是为了引导输入部分的编码 (guiding what to extract from ),Decoder 端增加前缀是为了引导后续token的生成 (...
和前两章微调LM和全部冻结的prompt模板相比,微调Prompt范式最大的区别就是prompt模板都是连续型(Embedding),而非和Token对应的离散型模板。核心在于我们并不关心prompt本身是否是自然语言,只关心prompt作为探针能否引导出预训练模型在下游任务上的特定能力。 固定LM微调Prompt的范式有以下几个优点...
prefix LM和casual LM的主要区别在于() A.模型结构不同B.训练数据不同C.attention mask不同D.生成策略不同 点击查看答案&解析 你可能感兴趣的试题 单项选择题 RLHF流程的第一步是() A.使用函数/模型/人类反馈评估问题和答案B.语言模型根据问题生成答案或续写C.在PPO优化步骤中计算序列中标记的对数概率D.使用...