prefix decoder causal decoder Prefix Decoder和Causal Decoder是两种不同的解码器架构,都属于自然语言处理领域中的语言模型。 Prefix Decoder是指解码器在生成输出序列时会考虑整个输出序列的长度,并根据这个长度来决定解码的顺序。这种架构通常用于生成较长的序列,如文章或句子。 Causal Decoder则是在生成输出序列时,只...
Causal Decoder适用于文本生成任务,如对话生成、文本续写、文章创作等。 二、Prefix Decoder 结构特点 Prefix Decoder,即前缀语言模型,其结构介于Causal Decoder和Encoder-Decoder之间。该框架在输入部分采用双向注意力,允许前缀序列中的任意两个token相互可见;而在输出部分则采用单向注意力,类似于Causal Decoder。代表模型有...
训练阶段,通常使用自回归方式进行训练,prefix Decoder 和 causal Decoder 主要的区别在于 attention mask不同。 代表模型:GPT系列、LLaMA-7B、BLOOM、LLaMa 衍生物 Encoder-Decoder 定义:Encoder-Decoder包括一个编码器(Encoder)和一个解码器(Decoder)。编码器使用双向注意力,每个输入元素都可以关注到序列中的其他所有...
Causal LM是因果语言模型,目前流行的大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。 参照着Prefix LM,可以看下...
(1) prefix tuning和zero-shot的区别在于,把指令/要求(比如要生成positive的句子)和输入的文字直接区分开,指令用连续向量而不是离散词元表示。如果不是prefix tuning,那么需要用明确的语言做prompt engineering,比如: 要求:生成积极的句子。 主题:运动 例子:游泳有益于身心健康 ...
Prefix Decoder 双向 单向 机器翻译、文本摘要等 GLM-130B、ChatGLM-6B Encoder-Decoder 双向 单向 机器翻译、文本摘要、语音识别等 Transformer及其变体 综上所述,Causal Decoder、Prefix Decoder和Encoder-Decoder三种架构各有千秋,适用于不同的文本处理任务。在选择合适的模型架构时,需根据具体任务的需求和数据特点进行...
Causal LM是因果语言模型,目前流行的大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。
Causal LM是因果语言模型,目前流行的大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。
Causal LM是因果语言模型,目前流行地大多数模型都是这种结构,别无他因,因为GPT系列模型内部结构就是它,还有开源界的LLaMa也是。 Causal LM只涉及到Encoder-Decoder中的Decoder部分,采用Auto Regressive模式,直白地说,就是根据历史的token来预测下一个token,也是在Attention Mask这里做的手脚。