一、predict 和 predict_proba的概念和区别 1、predict和predict_proba都是用于模型的预测。 2、predict返回的是一个预测的值,predict_proba返回的是对于预测为各个类别的概率。 3、predict_p... 查看原文
# One-vs-Rest 选择decision_function的得分[0-Rest,1-Rest,2-Rest,3-Rest]最大的作为分类结果print("decision_function:\n",clf.decision_function(X))# precidt预测样本对应的标签类别print("predict:\n",clf.predict(X))# predict_proba 预测样本对应各个类别的概率print("predict_proba:\n",clf.predict...
1.predict与predict_proba区别 都用于模型的预测 predict返回的是预测的值(二分类则是0,1),predict——proba返回的是预测各个类别的概率。 predict_proba返回的是一个n行k列的数组,n表示测试集中样本的个数,地i行j列数值是模型预测第i个预测样本某个标签的概率,每行之和为1.相对更精准。比如在画ROC图使用。
使用predict_proba函数的步骤如下: 导入必要的库和模块: 代码语言:txt 复制 from hmmlearn import hmm 创建一个HMM模型对象: 代码语言:txt 复制 model = hmm.MultinomialHMM(n_components=2) # 创建一个具有2个隐藏状态的多项式HMM模型 训练HMM模型:
这篇文章将为大家详细讲解有关sklearn中predict与predict_proba区别是什么,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获...
1、predict和predict_proba都是用于模型的预测。 2、predict返回的是一个预测的值,predict_proba返回的是对于预测为各个类别的概率。 3、predict_proba返回的是一个 n 行 k 列的数组,n 表示测试集中样本的个数, 第 i 行 j列的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1。 实...
predict predict_proba区别的小例子 predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本的标签为j的概率。所以每一行的和应该等于1. 举个例子>>>fromsklearn.linear_modelimportLogisticRegression>>>importnumpy as np>>> x_train = np.array([[1,2,3],...
所以有的情况下predict_proba还是很有用的,它可以获得对每种可能结果的概率,使用predict则是直接获得唯一的预测结果,所以在使用的时候,应该灵活使用。 补充一个知识点:关于预测结果标签如何与原来标签相对应 predict_proba返回所有标签值可能性概率值,这些值是如何排序的呢?
sklearn中的predict与predict_proba的区别(得到各条记录每个标签的概率(支持度)),假定在一个k分类问题中,测试集中共有n个样本。则: predict返回的是一个大小为n的一维数组,一维数组中的第i个值为模型预测第i个预测样本的标签; predict_proba返回的是一个n行k列
做分类预测模型,特别是二值分类器,难免会用到AUC值,AUC值就会牵扯出ROC曲线,ROC曲线就会牵扯出TPR和FPR,计算TPR和FPR就想到predict_proba和roc_curve,大概是这一系列连锁反应。 做的是一个复购模型验证,数…