而如果将骨架网络从 ResNet50 更换为 ResNet101,PP-YOLOv2 的优势则更为显著:mAP 达到 50.3%,速度比同计算量的 YOLOv5x 高出了 15.9%。不仅如此,与 PP-YOLOv2 一同面世的,还有体积只有 1.3M 的 PP-YOLO Tiny,比 YOLO-Fastest 更轻、更快!这样超超超轻量的算法面世,更是很好的满足了产业里大...
图3.代价聚合中不同块的比较。DW是指深度可分离卷积,V1 Block表示深度可分离卷积,V2 Block表示倒残...
code:https://github.com/PaddlePaddle/PaddleDetection 摘要: 在PP-YOLO的基础上再进行了改进,提高精度的同时几乎保持推断时间不变。作者分析了一系列改进,并通过增量消融实验来实证评估它们对最终模型性能的影响。最后PP-YOLOv2取得了更佳的性能(49.5%mAP)-速度(69FPS)均衡,并优于YOLOv4与YOLOv5。 PP-YOLO阅读笔...
1. 比YOLOv4、YOLOv5 更强的PP-YOLOv2 无需再纠结YOLOv3、YOLOv4、Scaled YOLOv4、YOLOv5到底选哪个了,选PPYOLOv2就对了!最高mAP 50.3%,最高FPS106.5FPS,超越YOLOv4甚至YOLOv5!又快又好,他不香么?论文:https://arxiv.org/abs/2104.10419 2. 1.3M 超超超轻量目标检测算法PP-YOLO Tiny 需要在AIoT边缘...
众所周知,PPYOLO和PPYOLOv2的导出部署非常困难,因为它们使用了可变形卷积、MatrixNMS等对部署不太友好的算子。 而作者在ncnn中实现了可变形卷积DCNv2、CoordConcat、PPYOLO Decode MatrixNMS等自定义层,使得使用ncnn部署PPYOLO和PPYOLOv2成为了可能。其中的可变形卷积层也已经被合入ncnn官方仓库。 在ncnn中对图片预...
【新智元导读】今天给大家安利一个宝藏仓库miemiedetection ,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOLOv2和PPYOLO算法刚刚支持了导出ncnn。 众所周知,PPYOLO和PPYOLOv2的导出部署非常困难,因为它们使用了可变形卷积、MatrixNMS等对部署不太友好的算子。
PP-YOLOv2 采用了 FPN 的变形之一—PAN(Path Aggregation Network)来从上至下的聚合特征信息。 采用Mish 激活函数 PP-YOLOv2的mish 激活函数应用在了 detection neck 而不是骨架网络上。 更大的输入尺寸 增加输入尺寸直接带来了目标面积的扩大。这样,网络可以更容易捕捉到小尺幅目标的信息,得到更高的性能。然而...
在同等FPS下,PP-YOLOv2以2%mAP优于YOLOv4-CSP,以1.3%AP优于YOLOv5l; 替换ResNet50为ResNet101后,PP-YOLOv2的性能与YOLOv5x相当且推理速度快15.9%。 Things We Tried That Didn't Work 由于COCO train2017数据上训练(8个V100)PP-YOLO需要花费80小时,因此我们采用COCO minitrain(它是COCO train2017的子集,包...
【新智元导读】今天给大家安利一个宝藏仓库miemiedetection ,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOLOv2和PPYOLO算法刚刚支持了导出ncnn。 众所周知,PPYOLO和PPYOLOv2的导出部署非常困难,因为它们使用了可变形卷积、MatrixNMS等对部署不太友好的算子。
PP-YOLO模型库 二、环境准备 1.安装paddlex 2.数据加载与数据预处理 三、模型的选择和开发 定义图像处理流程transforms 定义数据集Dataset 配置GPU 模型建立 模型训练 模型预测 新版Notebook- BML CodeLab上线,fork后可修改项目版本进行体验 基于PP-YOLOv2的疲劳检测任务 基于PPYOLOv2的疲劳检测。看了众多相关...