从上图我们可以看出,PP-LCNet在同样精度的情况下,速度远超当前所有的骨架网络,最多可以有2倍的性能优势!它应用在比如目标检测、语义分割等任务算法上,也可以使原本的网络有大幅度的性能提升~ 而这个PP-LCNet的论文发布和代码开源后,也着实引来了众多业界开发者的关注,各界大神把PP-LCNet应用在YOLO系列算法上也真实...
通过这些改进,PP-LCNet在相同的分类推理时间下,它优于最先进的模型,准确率可以大大超过以前的网络结构。并且对于计算机视觉的下游任务,也表现非常出色,比如物体检测、语义分割等等。 PP-LCNet 在同样精度的情况下,速度远超当前所有的骨架网络!它应用在比如目标检测、语义分割等任务算法上,也可以使原本的网络有大幅度的...
从上图我们可以看出,PP-LCNet 在同样精度的情况下,速度远超当前所有的骨架网络,最多可以有 2 倍的性能优势!它应用在比如目标检测、语义分割等任务算法上,也可以使原本的网络有大幅度的性能提升。 而这个 PP-LCNet 的论文发布和代码开源后,也着实引来了众多业界开发者的关注,各界大神把 PP-LCNet 应用在 YOLO 系...