本文独家改进:Powerful-IoU更好、更快的收敛IoU,是一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数 💡💡💡MS COCO和PASCAL VOC数据集实现涨点 1.Powerful-IoU介绍 链接:https://www.sciencedirect.com/science/article/abs/pii/S0893608023006640 摘要:边界框回归(Bounding box re...
然而,我们观察到现有的基于iou的损失函数受到不合理的惩罚因素的影响,导致锚框在回归过程中膨胀,显著减缓了收敛速度。为了解决这个问题,我们深入分析了锚框增大的原因。为此,我们提出了一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的强效iou (PIoU)损失函数。PIoU损耗引导锚框沿着有效路径回归,从而比...
【摘要】 Powerful-IoU更好、更快的收敛IoU,是一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数 💡💡💡本文独家改进:Powerful-IoU更好、更快的收敛IoU,是一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数 💡💡💡MS COCO和PASCAL VOC数据集实现涨点 1.Po...
本文独家改进:Powerful-IoU更好、更快的收敛IoU,是一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数 ???MS COCO和PASCAL VOC数据集实现涨点 《YOLOv10魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&...
In response, we propose a Powerful-IoU (PIoU) loss function, which combines a target size-adaptive penalty factor and a gradient-adjusting function based on anchor box quality. The PIoU loss guides anchor boxes to regress along efficient paths, resulting in faster convergence than existing IoU-...
In response, we propose a Powerful-IoU (PIoU) loss function, which combines a target size-adaptive penalty factor and a gradient-adjusting function based on anchor box quality. The PIoU loss guides anchor boxes to regress along efficient paths, resulting in faster convergence than existing IoU-...
SIoU Loss:Powerful Learning for Bounding Box Regression 目标检测任务是计算机视觉中的核心问题之一,而不同目标检测模型的性能很大程度上取决于损失函数的设计。以YOLO系列举例,一般YOLO系列的输出头都包含Regression和Classification两部分。 其中Regression用于回归目标框,则其包含的损失即为预测框和真实框之间的损失 Clas...
1.Powerful-IoU介绍 摘要:边界框回归(Bounding box regression, BBR)是目标检测中的核心任务之一,而BBR的损失函数对其性能影响很大。然而,我们观察到现有的基于iou的损失函数受到不合理的惩罚因素的影响,导致锚框在回归过程中膨胀,显著减缓了收敛速度。为了解决这个问题,我们深入分析了锚框增大的原因。为此,我们提出了一...