We have given an Arithmetic Expression and we have to write a program that converts the infix to postfix using stack in C. The Expression will be given in the form of a string, where alphabetic characters i.e a-z or A-Z denotes operands and operators are ( +, –, *, / ). Expres...
return true; return false; } int main() { stack<char>op; stack<char>num; op.push('#'); num.push('#'); string s; cin>>s; for(int i=0;i<s.size();i++) { if(!isOp(s[i])) num.push(s[i]); else { char c=compare(op.top(),s[i]); if(c=='<') op.push(s[i]...
#include<stack> #include<iostream> #include<string> usingnamespacestd; //优先级判断 charcompare(charopt,charsi) { if((opt=='+'||opt=='-')&&(si=='*'||si=='/') return'<'; elseif(opt=='#') return'<'; return'>'; }
…3.4 Push the resulted string back to stack. 1classSolution {2boolean isOperator(charx) {3switch(x) {4case'+':5case'-':6case'/':7case'*':8returntrue;9default:10returnfalse;11}12}1314String postToInfix(String exp) {15Stack<String> s =newStack<String>();1617for(inti =0; i <...
I have written a C++ program to convert an infix expression to postfix expression using recursion. I would like to know if it can be improved if possible. Can we improve it by not usingastack? I am using avectorvector<char>as a stack here. ...
1. Conversion from Infix to Postfix Notation Supported Mathematical Operators: +, - (unary and binary) *, /, ^ Supported Functions: sin, cos, tan, cot, sqrt, ln, exp Supported Constants PI Description: The expression is converted using a stack for operators. 2. Evaluation of Postfix Ex...
stack using structure */ struct Stack { char stack[10]; ///< array stack int top; ///< stores index of the top element }; struct Stack st; ///< global declaration of stack st /** * @brief Function to push on the stack * @param opd character to be pushed in the stack * @...
21. Convert infix topostfixsource code integrity, and can be used directly. 转换缀以后缀的源代码完整,并可以直接使用。 youdao 22. If thepostfixexpression was correctly formed, the stack should be empty. 若后缀表达式格式正确,那么堆栈应该为空。
要求是我们必须使用一个基本的 Stack 类。用户以“中缀”形式输入方程,然后我应该将其转换为“后缀”以进行评估和绘图。我在使用中缀到后缀算法时遇到问题。我见过其他可以工作的算法,但我的教授希望它以某种方式完成。这是我到目前为止所拥有的: def inFixToPostFix(): inFix = '3*(x+1)-2/2' postFix = ...
Input:A*(B*C+D*E)+F Output:ABC*DE*+*F+ Input:(A+B)*C+(D-E)/F+G Output:AB+C*DE-F/+G+ Practice this problem The idea is to use thestack data structureto convert an infix expression to a postfix expression. The stack is used to reverse the order of operators in postfix ex...