4. Positional Encoding 5. Rotary Position Embedding(RoPE) 6. 展望 1. 简介 人工智能发展至今,Transformer是背后最重要的模型之一,它甚至统一了文本,图像、视频、声音、代码、数学等各个领域。对于这一载入史册的模型,我们有必要从头理解它的原理和细节。 2. Attention Transformer的核心是Scaled Dot-Product Attent...
Transformer的Attention本身是没有处理词序(Token序)的机制,如果没有额外信息,即使打乱Tokens之间顺序后输入Attention Block中,对它的区别并不大。 因此就需要通过添加Postional Encoding在输入Token时将Token的时序信息一并加入。 注:位置编码并非Transformer模型首创,在此之前也有人尝试在CNN中使用。 注:在深度学习中,一...
Transformer 模型中的位置编码(Positional Encoding)是为了让模型能够考虑单词在句子中的位置。 由于Transformer 的自注意力(Self-Attention)机制本身并不考虑单词的顺序,位置编码就成为了引入这种顺序信息的关键。 位置如图 位置编码(Positional Encoding)分别加到了输入嵌入(Input Embedding)和输出嵌入(Output Embedding)之后。
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/ === Here is an awesome recent Youtube video that covers position embeddings in great depth, with beautiful animations: Visual Guide to Transformer Neural Networks - (Part 1) Position Embedd...
Transformer中的位置编码(Positional Encoding) 标准位置编码 原理上Transformer是无法隐式学到序列的位置信息的,为了可以处理序列问题,Transformer提出者的解决方案是使用位置编码(Position Encode/Embedding,PE) . 大致的处理方法是使用sin和cos函数交替来创建位置编码PE, 计算公式如下: ...
Positional Encoding 由于Transformer 模型没有显式的顺序信息(没有循环神经网络的迭代操作),为了保留输入序列的位置信息&顺序关系,需要引入位置编码。位置编码是一种向输入嵌入中添加的特殊向量(不被训练的),用于表示单词或标记在序列中的位置。 相比起直接 concatenate ,直接相加似乎看起来会被糅合在输入中似乎位置信息...
对于transformer模型的positional encoding有两种主流方式: (1)绝对位置编码: Learned Positional Embedding方法是最普遍的绝对位置编码方法,该方法直接对不同的位置随机初始化一个 postion embedding,加到 word embedding 上输入模型,作为参数进行训练。 (2)相对位置编码 ...
位置编码(Positional encoding)可以告诉Transformers模型一个实体/单词在序列中的位置或位置,这样就为每个位置分配一个唯一的表示。虽然最简单的方法是使用索引值来表示位置,但这对于长序列来说,索引值会变得很大,这样就会产生很多的问题。 位置编码将每个位置/索引都映射到一个向量。所以位置编码层的输出是一个矩阵,其...
14 Transformer之位置编码Positional Encoding (LIaky77编辑于 2024年11月08日 09:33 (1)为什么transformer需要位置编码 attention优点: 全局感知 并行化计算 attention缺点: 计算开销大 可以并行,也就是词与词之间不存在顺序关系,两个相同的词在不同的位置,计算得到的结果是相同的(打乱一句话,其每个词的词向量计算...
我在学习NLP的时候,围绕着我不懂得技术点,逐个击破,以此期望能够把各个模块理解的更深入,使我在今后的学习中,能够更深入的分析,让自己更通透。接下来切入正题,介绍下Transformer中需要使用的Positional encoding,它主要为Transformer这种并行计算模型,难以理解输入句子的语序而针对性设计的。