Pool.apply_async() 是 Python 标准库 multiprocessing 中的一个方法,用于实现异步执行多进程任务。 概念: Pool.apply_async() 是 multiprocessing.Pool 类的一个方法,它可以在一个进程池中异步执行一个函数。该方法会返回一个表示异步任务的 ApplyResult 对象,可以通过该对象获取异步任务的执行结果。 分类: Pool....
关于pool.apply_async的使用: pool.apply_async是Python中multiprocessing模块中的一个函数,用于实现异步地执行函数或方法。它可以在一个进程池中并行地...
print("finish") 去掉程序例: # res = p.apply_async(task,args=(112233,))的注释就出现想要的结果:
p.apply(func [, args [, kwargs]]) 在一个池工作进程中执行func(*args,**kwargs),然后返回结果。 需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async() p.apply_async(func [, args [, kwargs...
apply_async()是非阻塞异步的, 不会等待子进程执行完毕, 主进程会继续执行, 会根据系统调度来进行进程切换。但是如果进程数量很多,而进程不能很快完成,内存就会占用很多,甚至爆内存。 解决方法——参考: Memory usage keep growing with Python's multiprocessing.pool ...
在写多进程的时候我发现一个问题,用Pool的apply_async(异步非阻塞)的时候传入实例函数会出错,或者说是子进程被跳过似的感觉(python2.7)。 但是用python3.7的话没有任何问题。 code: output(python2.7): Parent process done! ou
apply()apply_async()map()map_async()close()terminal()join() 这里主要说一下apply和apply_async两个,其他的内容可以进行百度搜索 apply Signature:pool.apply(func,args=(),kwds={})Docstring:Equivalentof `func(*args,**kwds)`.File:/usr/lib/python3.5/multiprocessing/pool.pyType:method ...
multiprocessing.pool.apply_async 可以执行并行的进程,但是会将所有进程先读入列表,对于不是很多数量的进程来说没有问题,但是如果进程数量很多,比如100万条,1000万条,而进程不能很快完成,内存就会占用很多,甚至挤爆内存。那么如何限制内存的占有量呢。网上查询,找到一种解决方法:可以检测pool._cache的长度,如果超过一定...
python进程池Pool的apply_async⽅法以及⼀些需要注意的地⽅ 在写多进程的时候我发现⼀个问题,⽤Pool的apply_async(异步⾮阻塞)的时候传⼊实例函数会出错,或者说是⼦进程被跳过似的感觉(python2.7)。但是⽤python3.7的话没有任何问题。code:# -*- coding:utf-8 -*- import multiprocessing ...
df_ = pool.apply_async(func=self.select_data_one, args=(table_name, page_no, page_size)...