random.randint(1, third * 2, size=third), (third, 1)).tolist(), ] data["d"] = list(itertools.chain.from_iterable(d)) df = pl.DataFrame(data) pl_df = df.with_columns([pl.col("a").cum_count().over("a", "b").alias("c")]) pl_df.select(['a', 'b', 'c', "d"...
pl.Expr.list.join,可以将子列表中的所有字符串项连接起来,并在它们之间使用分隔符。 df.with_columns( pl.col("list_of_strings").list.join("") ) shape: (3, 1)┌─────────────────┐│ list_of_strings ││ --- ││ str │╞═════════════════...
columns 参数表示选择指定的列,但读取之后的字段顺序还是取决于 CSV。虽然这里 columns 指定的是 length、age,但读取之后 name 在 length 的前面,因为 CSV 里面字段 name 就在 length 的前面。 new_columns 如果你觉得 CSV 文件的列名不合适,想自己指定,那么便可以通过 new_columns 参数实现。 importpolarsaspl df...
Description Polars allows concatentation of List typed columns with pl.concat_list. It would be useful to also allow concatenation of Array typed columns. Eg: df = pl.DataFrame([ pl.Series('x', [[0, 1], None, [2, 3]], dtype=pl.Array(pl.I...
df = df.with_columns( pl.sum("nrs").alias("nrs_sum"), pl.col("random").count.alias("count"), ) print(df) out= df.filter(pl.col("nrs") >2) print(out) out= df.group_by("groups").agg( pl.sum("nrs"),# sum nrs by groups ...
df = df.with_columns( pl.sum("nrs").alias("nrs_sum"), pl.col("random").count().alias("count"), ) print(df) out= df.filter(pl.col("nrs") >2) print(out) out= df.group_by("groups").agg( pl.sum("nrs"),# sum nrs by groups ...
polars.exceptions.ColumnNotFoundError: a_split_0 Resolved plan until failure: ---> FAILED HERE RESOLVING 'with_columns' <--- UNNEST by:[a] WITH_COLUMNS: [col("a").list.to_struct()] DF ["a"]; PROJECT */1 COLUMNS; SELECTION: None I suspect this might be an expected behaviour. ...
(out) # 原始df 新增列 df = df.with_columns( pl.sum("nrs").alias("nrs_sum"), pl.col("random").count().alias("count"), ) print(df) out = df.filter(pl.col("nrs") > 2) print(out) out = df.group_by("groups").agg( pl.sum("nrs"), # sum nrs by groups pl.col("...
As you can see this is a huge dataset. with over 11 columns and 150k+ entries, we have a lot of data to analyze. The columns I am interested in are Country, points, and price. Let us see what we can find. Null Values Before moving forward we have to take care of the null valu...
所以我们必须把.mode()的结果聚合到一个list中,然后我们可以使用.arr扩展来得到这个列表的第一个元素。