GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
You can refer to the original PointNet2 paper and code (https://github.com/charlesq34/pointnet2) for details. This fork focused on semantic segmentation, with the goal of comparing three datasets : Scannet, Semantic-8 and Bertrand Le Saux aerial LIDAR dataset. To achieve that, we clean, ...
https://github.com/yanx27/Pointnet_Pointnet2_pytorchgithub.com/yanx27/Pointnet_Pointnet2_pytorch Motivation 在这个工作中,作者探索了一个能够推理三维几何数据(如点云或网格)的深度学习架构,典型的卷积架构需要高度规则的输入数据格式,如图像网格或3D体素,以便执行权重共享和其他内核优化。而由于点云或者mesh是...
在S3DIS语义分类数据集上, PointNeXt达到了74.3% mIOU(6-fold),超过SOTA模型Point Transformer (73.5% mIoU). 代码和模型已经开源:https://github.com/guochengqian/pointnext 简介 3D点云领域的大多数工作专注于开发精巧的模块来提取点云的局部细节,例如 KPConv [3] 中的伪网格卷积以及 Point Transformer [4] ...
准备好探索3D分割的世界吧!让我们一起完成PointNet的旅程,探索一种理解3D形状的超酷方式。PointNet就像是计算机观察3D物体的智能工具,特别是对于那些在空间中漂浮的点云。与其他方法不同,PointNet直接处理这些点,不需要将它们强行转换成网格或图片。
PointNet: Deep Learning on PointSets for 3D Classification and Segmentation Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas StanfordUniversity [arXiv version] [Code onGitHub] Applications of PointNet.We propose anovel deep net architecture that consumes raw point cloud (set of points)witho...
语义分割(Semantic Segmentation in Scenes)—— Stanford Large-Scale 3D Indoor Spaces Dataset 对S3DIS数据集进行简单说明:在6个区域的271个房间,使用Matterport相机(结合3个不同间距的结构光传感器),扫描后生成重建3D纹理网格,RGB-D图像等数据,并通过对网格进行采样来制作点云。对点云中的每个点都加上了1个语义...
我的Github项目地址是:【AI 菌】的Github 资源传送门: 原论文地址:PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 开源项目地址:TensorFlow1.0实现、PyTorch1.0实现 文章目录 1. PointNet简介 2. 提出背景 3. 网络结构 4. 模型的特点 ...
我的Github项目地址是:【AI 菌】的Github 资源传送门: 原论文地址:PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 开源项目地址:TensorFlow1.0实现 、PyTorch1.0实现 文章目录 1. PointNet简介 2. 提出背景 3. 网络结构
'Pointnet2.ScanNet - PointNet++ Semantic Segmentation on ScanNet in PyTorch with CUDA acceleration' by Dave Z. Chen GitHub: http://t.cn/AikUZ7Kr