1 Pointnet的基本思想是对输入点云中的每一个点学习其对应的空间编码,之后再利用所有点的特征得到一个全局的点云特征。这里欠缺了对局部特征的提取及处理。2 比如说点云空间中临近点一般都具有相近的特征,同属于一个物体空间中的点的概率也很大,就好比二维图像中,同一个物体的像素值都相近一样。3 再者现实场...
具体而言,PointNet++ MSG首先使用k-means算法将输入的点云数据聚类成k个不同的簇,每个簇代表一个尺度组。然后,在每个尺度组内,PointNet++ MSG会利用PointNet网络进行特征提取,得到每个点的局部特征。接下来,PointNet++ MSG通过一系列的上采样和特征拼接操作,将不同尺度组的特征进行融合,得到最终的点云特征表示。 在...
分割网络需要cancat global features和local features。(但实际上local features并没有充分地提取局部特征,例如密度表征等,所以后来才提出了其改进版PointNet++,但速度更慢) 3. 网络后端(分类or分割) 3.1 分类就是正常的Classificaion网络了 3.2 分割则是继续使用conv1d,然后view得到[batchsize, 2500, classnum],再v...
PointNet是一个先锋在这个领域。然而他不能捕获空间点引起的局部结构特征,这限制了其对细微场景的和复杂场景的表示能力。本文中提出了递归的网络结构,嵌入到PointNet中,嵌入的处理输入的点云序列。通过使用空间距离,我们的网络能够通过不断增加的上下文范围来学习本地特性。进一步的研究表明,点云通常会被采样为多种不同...
更进一步地加强了对局部特征的提取能力.论文结合深度学习中的优化思想,对PointNet++结构进行改进,加入自顶向下的网络分支,经过处理后将原网络每一层的中间特征都输入到最终分类网络,更进一步地强化特征提取的能力.该网络易于理解且高效,在ModelNet40数据集上测试,整体分类准确率有明显提升,证明了其优化后的特征提取能力...