至此,便可使用PointNet++来训练自定义数据集了: 从结果来看,其并不平衡。 模型测试 模型测试所需要修改的参数基本与模型训练的类似,即修改类别数,数据集路径即可 问题 在模型训练过程中,发现该模型训练起来十分缓慢,从GPU利用率来看,其利用率很低,多数情况下其占用着显存,但其却并不参与运算,而内存却始终占用较高。
data/modelnet40_ply_hdf5_2048/ply_data_train4.h5 训练之前把5个训练文件的顺序打乱: ifself.shuffle: np.random.shuffle(self.file_idxs) 测试数据(TEST_DATASET)是2个.h5格式的文件: data/modelnet40_ply_hdf5_2048/ply_data_test0.h5 data/modelnet40_ply_hdf5_2048/ply_data_test1.h5 数据集加载...
训练之前把5个训练文件的顺序打乱: if self.shuffle: np.random.shuffle(self.file_idxs) 1. 测试数据(TEST_DATASET)是2个.h5格式的文件: data/modelnet40_ply_hdf5_2048/ply_data_test0.h5 data/modelnet40_ply_hdf5_2048/ply_data_test1.h5 数据集加载的关键是对数据集进行分批,2048*2048*3--->16*...
接着我们需要对划分训练集、测试集、验证集的json文件进行处理,由于我们采用的是自己的数据集,每一个txt的文件名与之前官方数据集中的文件名一定不一样,所以需要编写脚本对控制训练集、测试集、验证集读入的三个json文件进行修改。具体代码如下(路径名同样需要修改为自己的路径名): Python Python importos filePath=...
(下载完成后记得把数据集放入point.pytorch文件夹中) 2、安装PointNet 先下载好github上pointnet文件,链接:pointnet.pytorch文件 进入文件夹: cd pointnet.pytorch 输入下面代码: pip install -e . 三、训练PointNet分类 我主要使用的功能是分类功能,所以只训练了分类,如果还需要分割功能只需要将下面运行的文件由train_...
将输入作为RNN的训练序列,但是通过各种排列来实现训练数据集的增强 使用一个简单的对称函数来聚合来自每个点的信息 这里,对称函数使用n个向量作为输入,并且输出一个对输入顺序不变的新向量。例如:+与*是对称的二元函数。 虽然排序看起来像一个简单的解决方案,但事实上在高维空间中一般场景下关于点的扰动不存在平稳的...
数据准备 在使用PointNet之前,首先需要准备相应的点云数据集。这些数据集可以是公开可用的,如ShapeNet、ModelNet等,也可以是自己采集的。确保数据集的质量和多样性对于训练出高性能的PointNet模型至关重要。 模型训练 (1)定义网络结构:根据具体任务需求,选择合适的PointNet网络结构。对于分类任务,可以采用简单的全局特征...
要用自己录的PCD点云数据做语义分割,发现了数据格式有很大问题。 pointnet++使用的室内S3DIS数据集,我用的.npy文件作的训练和测试。npy是numpy的一种二进制高效文件保存形式。 S3DIS——npy类型的数据集每个npy内部有9个维度的数据,分别是x,y,z,x_,y_,z_,r,g,b九个维度数据,中间三个是语义信息真值。
Pointnet的网络结构和源码解释,已在之前写了次总结,本次主要针对论文中的数据集以.h5为TensorFlow的输入格式进行解释,记录如何制作H5文件,以提供给TensorFlow,PyTorch框架中进行训练。 首先,Pointnet一文中针对3个不同的任务使用到了三个数据集,分别为: 点云分类(3D Object Classification)——ModelNet40,下载命令在prov...
放上自己在谷歌的Colab上的gpu实现:在Colab上实现分类和Part_seg,选择GPU版本的Notebook,挂载好自己的谷歌云盘(方便保存和加载训练数据),batch_size设置为32,数据集使用别人共享的Shapenet的数据集。对于语义分割部分colab上的免费gpu满足不了,需要购买更高版本的配置。———版权声明:本文为CSDN博主「Chris_34」的原...