A point cloud is a set of data points in space. The points represent a 3D shape or object. Each point has its set of X, Y and Z coordinates. Here are 485 public repositories matching this topic... Language: All Sort: Most stars isl-org / Open3D Star 12.2k Code Issues Pull ...
A point cloud is a set of data points in space. The points represent a 3D shape or object. Each point has its set of X, Y and Z coordinates. Here are 18 public repositories matching this topic... Language: Lua Sort: Most stars killall-q / Hologram Star 13 Code Issues Pull ...
· 项目主页:pointcloud-c.github.io/ · 开源代码:github.com/ldkong1205/P 一句话总结 首个用于评测点云识别模型鲁棒性的基线,包括ModelNet-C和ShapeNet-C两个子集;贴近真实世界的设计,涵盖物体(object)、传感器(sensor)和处理(processing)等阶段中的corruption情形;为基于监督学习、自监督预训练和数据增强等的点...
pointcloud-sotagithub.com/yeyan00/pointcloud-sota 点云深度学习的任务主要集中在以下几个方面:分类(Classification)、分割(Segmentation)、目标检测(Object Detection)、实例分割(Panoptic Segmentation)、配准(Registration)、点云重构(Reconstruction)。 点云深度学习方法在论文(Deep Learning for 3D Point Clouds: ...
CloudCompare是一款三维点云(Point Cloud)处理软件,可以方便地使用计算法向量、优化法向量、泊松构网、滤波等功能
Point Cloud Library Website The new website is now online at https://pointclouds.org and is open to contributions :hammer_and_wrench:. If you really need access to the old website, please use the copy made by the internet archive. Please be aware that the website was hacked before and...
Point cloud refers to a data representation of a 3D space that is used in various fields such as earth sciences, engineering construction, and unmanned driving. It provides a detailed and accurate description of the real world, allowing for scientific research, smart cities, and smart transportatio...
摘要:1、 fast-3d https://github.com/fverdoja/Fast-3D-Pointcloud-Segmentation阅读全文 posted @2020-06-04 15:05玥茹苟阅读(545)评论(0)推荐(0) 关于多站点全景纹理贴图问题 摘要:前言 对于多站点全景纹理贴图,主要是怎么处理遮挡、以及站点与站点过度问题,本文设计了一下方法进行多站点全景的纹理贴图。
代码仓库:https://github.com/yuxumin/PoinTr 论文链接:https://arxiv.org/abs/2108.08839 视频:https://youtu.be/mSGphas0p8g 1 简介 在现实场景下,现有的3D传感器由于物体自遮挡等问题只能采集到缺失且稀疏的点云数据,所以如何将这样缺失且稀疏的点云进行补全以得到高品质的点云,具有重大意义。想要借助...
本文的结构如下。 第2节回顾了3D形状分类的方法。 第3节概述了3D对象检测和跟踪的现有方法。 第4节概述了点云分割方法,包括语义分割,实例分割和零件分割。 最后,第5节总结了论文。 我们还在以下网址上提供了定期更新的项目页面:https://github.com/QingyongHu/SoTA-Point-Cloud。