分布特征来源解析为明确典型矿业活动区浅层地下水多环芳烃(PAHs)污染特征及来源,通过水样采集与测试分析,综合采用多元统计分析方法,正矩阵因子分解(PMF)和绝对主成分得分-多元线性回归(APCS-MLR)模型,研究了某煤矿区地下水中PAHs的分布特征与影响因素,污染来源及贡献率.结果表明:研究区地下水中PAHs的总浓度为12.65~...
Rajabi A, Hashemi AA (2022) Groundwater geochemistry, quality, and pollution of the largest lake basin in the Middle East: comparison of PMF and PCA-MLR receptor models and application of the source-oriented HHRA approach. Chemosphere 288:132489.https://doi.org/10.1016/j.chemosphere.2021.13248...
潘东宣目前是青海省广厦建筑工程有限公司直接控股股东,持股比例为94.23%,是贵德园创项目运营管理有限公司直接控股股东,持股比例为50.09%;潘东宣间接持股贵德园创项目运营管理有限公司、投资占比达50.09%;目前潘东宣是13家企业最终受益人,包括其在投资青海省广厦建筑工程有限公司第四分公司最终收益股份为94.23%,投资青海省...
12月31日,任弼时二女儿任远征逝世,享年89岁,糖心vlog无限vip破解版app下载|糖心vlog无限vip破解,37大但人文艺术 - shixiu Incorporated,《我是你亲妈呀你爸知道死你》HD高清免费在线观,宋雨琦ai换脸管鲍分拣中心官网排行榜最新_凤凰网,四虎永久地域网名2023知乎,最新黄品汇破解版v6.0.1-黄品汇破解版是一款提...
土壤重金属耕地绝对因子得分-多元线性回归(APCS-MLR)正定矩阵因子分解(PMF)以重庆市南川区某煤矸山周边耕地土壤为研究对象,运用内梅罗指数法和地累积指数法分析土壤重金属污染水平和分布特征,并采用绝对因子得分-多元线性回归(APCS-MLR)和正定矩阵因子分解(PMF)模型,探析研究区土壤重金属来源及其贡献率.结果表明,下游区...
绝对因子得分-多元线性回归(APCS-MLR)正定矩阵因子分解(PMF)源解析基于开封市污灌与工业复合区农田表土样品,测定8种重金属(Cr,Ni,Cu,Zn,Cd,Pb,As和Hg)含量,利用绝对因子得分-多元线性回归(APCS-MLR)模型和正定矩阵因子分解(PMF)模型,结合相关性分析和系统聚类分析对土壤重金属来源和贡献率进行解析.结果表明:①...
为探究塔里木河上游沉积物中重金属的污染来源及潜在生态风险,选取上游阿拉尔—沙雅段表层沉积物为研究对象,测定Cu,Fe,Zn,Pb,As,Cr,Cd,Mn和Ni等9种重金属的含量,分析其污染及空间分布特征.结合相关性分析,聚类分析,绝对主成分-多元线性回归(APCS-MLR)和正定矩阵因子分析(PMF)等解析污染来源及其贡献,运用富集系数法...
Both the APCS-MLR and PMF models identified agricultural nonpoint source pollution, urban nonpoint source pollution and rural domestic pollution, and meteorological factors. The sum of these three sources was very close, accounting for 60% and 58%, respectively. The APCS-MLR results demonstrated ...
The PCA-MLR results remained the most stable in both aspects. FA-NNC and PMF performed better in regards to the stability of contribution rates and source profiles, respectively. Improvements in the goodness of fit of overall and individual pollutants were always accompanied by a decrease in the...
The performance evaluation statistics including Nash coefficient (0.86-0.99), % error (<-14 to 2), and coefficient of determination (R-2 <= 0.99) showed better performance for the PMF model than the PCA-MLR model. Overall, the PMF receptor modeling approach was found to be more robust for...