PLS-DA(偏最小二乘判别分析)是一种结合降维与分类功能的多变量统计方法,适用于高维度数据的分组差异分析。其通过构建潜在变量最大化组间差
OPLS-DA是PLS-DA的改进版本,它结合了正交信号矫正技术,能够滤除与分类信息无关的噪声,提高模型的解析能力和有效性。在OPLS-DA得分图上,有两种主成分,即预测主成分t[1]和正交主成分to[1]。OPLS-DA将组间差异最大化的反映在第一个主成分(即t[1])上,而正交主成分则反映了组内的变异。 OPLS-DA通常用于两组...
PLS-DA模型_O..PLS-DA或OPLS-DA是一种有监督的判别分析统计方法。该方法运用PLS-DA建立代谢物表达量与样品类别之间的关系模型,来实现对样品类别的预测。分别建立两两分组比较的PLS-DA模型或OPLS-D
PLS-DA建模:通过绘制两组数据建模,输出一系列关键参数结果。模型基本信息存储在“plsda_result.txt”中。 评价(O)PLS-DA模型拟合效果使用R2X、R2Y和Q2Y这三个指标,这些指标越接近1,表示PLS-DA模型拟合数据效果越好。 R2X和R2Y分别表示PLSDA分类模型所能够解释X和Y矩阵信息的百分比,Q2Y则为通过交叉验证计算得出...
PLS-DA: 偏最小二乘法判别分析 偏最小二乘法判别分析(PLS-DA,Partial Least Squares Discriminant Analysis)经常用来处理分类和判别问题。其与PCA类似,不同的是PCA是无监督的,PLS-DA是有监督的。 当样本组间差异大而组内差异小时,无监督分析方法可以很好的区分组间差异。反之样本组间差异不大,无监督的方法就...
在启动窗口中将某个分类变量输入为 Y 时,使用指示符编码对其编码。若有k个水平,则用一个指示符变量来表示每个水平,对于属于该水平的行用值 1 表示,不属于该水平的行用 0 表示。得到的k个指示符变量被视为连续变量,PLS 分析按处理连续Y的方式处理这些指示符变量。
3. (O)PLS-DA法(VIP值) 一、倍数变化发 倍数变化法即根据代谢物的相对定量或绝对定量结果,计算某个代谢物在两组间表达量的差异倍数(Fold Change),简称FC值。假设A物质在对照组中定量结果为1,在疾病组中定量结果为3,那么此物质的FC值即为3。由于代谢物定量结果肯定是非负数,那么FC的取值就是(0, +∞)。
进行PLS-DA分析 📈 现在,我们可以开始PLS-DA分析啦!运行以下代码:```R df_plsda <- plsda(otu, group$group, ncomp = 2) # ncomp表示要提取的主成分数量,这里我们设置为2。你可以根据需要调整这个值。 ``` 绘制散点图 🎨 接下来,我们用PLS-DA的结果绘制散点图。运行以下代码:```R ...
以下是PLS-DA的一些关键公式和概念: 首先,PLS-DA基于偏最小二乘法(PLS),它是一种同时考虑自变量矩阵X和因变量矩阵Y的回归方法。在PLS中,X和Y被分解为得分矩阵(T和U)和载荷矩阵(P和Q)的乘积,并加上残差矩阵(E和F): X = TP' + E Y = UQ' + F 其中,T和U分别为X和Y的得分矩阵,P和Q分别为X和...
首先,我们有两个Excel文件,分别是患者的证素数据。每一列代表一位患者的多个数据,不同颜色代表了不同的分组。我们想要通过PLS-DA挖掘不同组别患者间存在差异的指标。 两个EXCEL分别是患者的证素的数据,由于是评分性质的,所以都是不连续的数字。每一列代表一位患者的多个数据,不同颜色代表了不同的分组,想通过PLS-...