PLS-DA(Partial Least Squares Discriminant Analysis),即偏最小二乘判别分析,是一种基于多元统计的监督式分类方法,广泛应用于代谢组学、生物信息学等领域,用于处理高维数据中的分类和差异分析。其核心目标是通过建立变量与样本类别之间的关联模型,实现样本分类并筛选关键差异特征。一...
PLS-DA(偏最小二乘判别分析)及OPLSDA等模型,在组学分析领域中占据着举足轻重的地位,它们属于基于有监督学习的降维分析技术。模型构建完成后,为了确保其拟合度与预测准确性,通常需要借助一系列的检验手段。其中,置换检验已成为评估PLS-DA模型性能的一种不可或缺的方法。Y和Q2Y是置换检验中经常使用的两个参数,...
PLS是偏最小二乘分析,DA是判别分析。再加一个o就是加了一个正交,OPLS-DA就是正交偏最小二乘法判别分析。 当变量数量远大于样品数量时(行数小于列数), PLS或 PLS-DA模型容易过拟合,但是PCA效果也不好。但是加入正交矫正之后数据检出假阳性会降低,所以会更准确。数据处理的时候一般是先做PCA,然后做OPLS-DA。
PLS-DA或OPLS-DA是一种有监督的判别分析统计方法。该方法运用PLS-DA建立代谢物表达量与样品类别之间的关系模型,来实现对样品类别的预测。分别建立两两分组比较的PLS-DA模型或OPLS-DA模型,模型得到的参数评价会以表格形式提供。其中R^2X和R^2Y分别表示所建模型对X和Y矩阵的解释率,Q2标示模型的预测能力,理论上R^...
PLS-DA建模:通过绘制两组数据建模,输出一系列关键参数结果。模型基本信息存储在“plsda_result.txt”中。 评价(O)PLS-DA模型拟合效果使用R2X、R2Y和Q2Y这三个指标,这些指标越接近1,表示PLS-DA模型拟合数据效果越好。 R2X和R2Y分别表示PLSDA分类模型所能够解释X和Y矩阵信息的百分比,Q2Y则为通过交叉验证计算得出...
进行PLS-DA模型的建立 接下来,我们使用PLS-DA建立模型。建立PLS-DA模型,并将数据集和组别变量作为输入。建立模型后,我们可以查看不同组别分别有哪些指标,以及哪些指标之间存在显著的差异。 tIndiv(plsda.breast, 从结果中可以看到不同组别分别有哪些指标,以及哪些指标之间存在显著的差异?
PLS-DA是监督式学习方法,旨在找到区分两个或多个预先定义的类别(如健康与疾病状态)的模式。 它通过建立一个模型来区分不同的组别,这使得它适用于分类和判别分析。 2.处理高维数据: PLS-DA特别适用于处理高维数据集(即特征数量远大于样本数量的数据),如基因表达数据、质谱数据等。
最后,我们可以比较PLS-DA,PCA-DA和RF的准确性。 我们将使用resamples编译这三个模型,并借用ggplot2的绘图功能来比较三种情况下最佳交叉验证模型的50个准确性估计值。 显然,长时间的RF运行并没有转化为出色的性能,恰恰相反。尽管三个模型的平均性能相似,但RF的精度差异要大得多,如果我们要寻找一个鲁棒的模型,这当...
PLS-DA(偏最小二乘判别分析)模型的外部验证主要目的是评估模型对于未知数据的泛化能力和预测准确性。外部验证在任何统计模型建立过程中都是一个重要步骤,尤其是在生物统计和化学计量学等领域,它确保了模型不仅仅在训练集上表现良好,而且能够有效预测新的、独立的数据集。以下是外部验证的几个主要目的:...