OPLS-DA是PLS-DA的改进版本,它结合了正交信号矫正技术,能够滤除与分类信息无关的噪声,提高模型的解析能力和有效性。在OPLS-DA得分图上,有两种主成分,即预测主成分t[1]和正交主成分to[1]。OPLS-DA将组间差异最大化的反映在第一个主成分(即t[1])上,而正交主成分则反映了组内的变异。 OPLS-DA通常用于两组...
PLS-DA和OPLS-DA都是多元数据分析的方法,主要用于生物医学领域的高通量数据分析,如代谢组学和蛋白质组学。它们通过将高维数据降维到二维或三维,从而可视化展示样本间的差异。PLS-DA(偏最小二乘回归分析)主要用于分析连续型响应变量与多个预测变量之间的关系,例如生物样本的代谢物含量与其表型(如疾病状态)之间的关系。...
PLS-DA模型_O..PLS-DA或OPLS-DA是一种有监督的判别分析统计方法。该方法运用PLS-DA建立代谢物表达量与样品类别之间的关系模型,来实现对样品类别的预测。分别建立两两分组比较的PLS-DA模型或OPLS-D
PLS-DA/OPLS-DA二维图 不同于主成分分析(PCA)法,Partial Least Squares Discrimination Analysis(PLS-DA)或Orthogonal PLS-DA(OPLS-DA)是一种有监督的判别分析统计方法。该方法运用PLS-DA建立代谢物表达量与样品类别之间的关系模型,来实现对样品类别的预测。分别建立两两分组比较的PLS-DA模型(图1)或OPLS-DA模型(...
OPLS-DA PLS-DA和OPLS-DA中涉及到两个矩阵:X矩阵为样本-变量观测矩阵,Y矩阵为样本类别归属矩阵。通过X和Y矩阵进行建模,即通过样本-变量关系确立样本关系。 两种方法相比,偏最小二乘(PLS)是一种基于预测变量和响应变量之间协方差的潜在变量回归方法,已被证明可以有效地处理具有多共线性预测变量的数据集。正交偏最...
PCA、PLSDA、OPLSDA是三种常用的多元统计分析方法,它们在数据处理和分析中具有不同的特点和用途:PCA: 定义:是一种多变量统计分析方法,用于通过线性变换选取较少数量的重要变量,从而简化数据结构。 用途:能初步了解各组样本之间的总体代谢物差异和组内样本之间的变异度大小,并通过分析质量控制样本进行...
在非靶向代谢组学分析中,PLS-DA与OPLS-DA是两种常用的数据分析方法。PLS-DA(Partial Least Squares Discriminant Analysis)是一种基于偏最小二乘法的判别分析技术,特别适用于高维度数据的分类任务。其优点在于能够处理大量变量与较少样本的数据集,且能有效识别不同群体间的差异,对于代谢物特征的区分...
PLS-DA(Partial Least Squares Discriminant Analysis)和OPLS-DA(Orthogonal Partial Least Squares Discriminant Analysis)是常用的多变量统计分析方法,用于寻找代谢组中与不同组别之间差异显著的代谢物。虽然两种方法都可以用于分类和预测,但它们在建模和解释方面有一些区别: ...
在选择PLS-DA(偏最小二乘判别分析)和OPLS-DA(正交偏最小二乘判别分析)来分析模型的预测能力时,考虑因素包括数据的特性和研究的具体需求。这两种方法都是用于多变量统计分析,尤其在代谢组学和化学计量学领域中广泛应用,但它们有一些关键的区别: 1.PLS-DA: ...
其实在绝大部分代谢组数据里面,我们的分组,都是不太可能在全局PCA里面区分开来,所以有基于正交信号校正的偏最小二乘判别分析(OPLS-DA) 来代替PCA,有点类似于我们前面的使用局部基因(免疫相关基因)后的PCA,它天然就可以把我们的生物学分组很好的区分开来。