三、高级图表 treemap(): 矩形树图sunburst(): 旭日图facet_row() / facet_col(): 分面绘图(按行/列拆分)icicle(): 冰柱图parallel_coordinates(): 平行坐标图parallel_categories(): 平行类别图 最后事项总结:所有图表返回 plotly.graph_objects.Figure 对象,可通过 .update_layout() 或 .update_traces() 进一步自定义修改格式。需安装依赖:pip ...
px.scatter_matrix( iris, # 数据 dimensions=["sepal_width","sepal_length","petal_width","petal_length"], # 维度选择 color="species") # 颜色 3.9 平行坐标图 px.parallel_coordinates( iris, # 数据集 color="species_id", # 颜色 labels={"species_id":"Species", # 各种标签值"sepal_width"...
density_contour矩阵的输入图: imshow三维图: scatter_3d, line_3d多维图: scatter_matrix, parallel_coordinates, parallel_categories平铺地图: scatter_mapbox, line_mapbox, choropleth_mapbox, density_mapbox离线地图
dict(range=[0,8], label='Sepal Width',values=df['total_bill']), ]) ) ) fig.show() 输出: 注:本文由VeryToolz翻译自Parallel Coordinates Plot using Plotly in Python,非经特殊声明,文中代码和图片版权归原作者nishantsundriyal98所有,本译文的传播和使用请遵循“署名-相同方式共享 4.0 国际 (CC BY...
df.dropna() df['Genre_id'] = df.Major_Genre.factorize()[0] fig = px.parallel_coordinates(...
df.dropna() df['Genre_id'] = df.Major_Genre.factorize()[0] fig = px.parallel_coordinates(...
px.parallel_coordinates( iris,# 数据集 color="species_id",# 颜色 labels={"species_id":"Species",# 各种标签值 "sepal_width":"Sepal Width", "sepal_length":"Sepal Length", "petal_length":"Petal Length", "petal_width":"Petal Width"}, ...
比较(四)利用python绘制平行坐标图 平行坐标图(Parallel coordinate plot)简介 平行坐标图可以显示多变量的数值数据,最适合用来同一时间比较许多变量,并表示它们之间的关系。...基于plotly import plotly.express as px # 导入数据 df = px.data.iris() # 利用parallel_coordinates快速绘制 fig =...# 标题 plt.ti...
import plotly.express as px df = px.data.tips() fig = px.parallel_coordinates( df, dimensions=['tip', 'total_bill', 'day','time'],) fig.show() 输出:示例2: 显示带有 go 的平行坐标图。Parcoords()Python 3import plotly.graph_objects as go fig = go.Figure(data=go.Parcoords( line_...
Multidimensional: scatter_matrix, parallel_coordinates, parallel_categories Tile Maps: scatter_mapbox, line_mapbox, choropleth_mapbox, density_mapbox Outline Maps: scatter_geo, line_geo, choropleth Polar Charts: scatter_polar, line_polar, bar_polar ...