Method Pixel-Wise Contrastive Loss 基于上述分析,文章提出了pixel-wise contrastive distillation(PCD),让student在像素级别上向老师学习。蒸馏的loss如下所示: 其中\ell表示contrastive loss,下文会有更详细的形式。s_i和t_i分别表示student和teacher的feature maps的第i个像素(文章假设了student和teacher的输出feature ...
When combined with the standard pixel-wise loss, both our new loss term and our iterative refinement boost the quality of the predicted delineations, in some cases almost doubling the accuracy as compared to the same classifier trained with the binary cross-entropy alone. We show that our ...
论文阅读-Hierarchical Cross-Modal Talking Face Generation with Dynamic Pixel-Wise Loss 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Hierarchical_Cross-Modal_Talking_Face_Generation_With_Dynamic_Pixel-Wise_Loss_CVPR_2019_paper.html 概述 关键词: 高级空间, 像素抖动, GAN模型 ...
51CTO博客已为您找到关于pixel-wise loss的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及pixel-wise loss问答内容。更多pixel-wise loss相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
此外,还有一个有趣的loss,因为作者期望输出的像素级loss只与当前像素的真伪有关,不被mask所影响,换句话说,就是我判断的依据是当前像素的语义和结构是否真实,而不是当前像素是否可能在mask中,由此可以避免鉴别器在整个过程中对前面阶段判别信息的以往。因此作者提出了一致性损失:...
论文阅读:Hierarchical Cross-Modal Talking Face Generation with Dynamic Pixel-Wise Loss,程序员大本营,技术文章内容聚合第一站。
The key element of our method is to replace the commonly used binary adversarial loss with a high resolution pixel-wise loss. In addition, we train our generator employing stochastic weight averaging fashion, which further enhances the predicted output label maps leading to state-of-the-art ...
(一)PEBAL_Loss PAL_Loss PAL(pixel-wise anomaly abstention loss)损失: 放弃outlier分类 校准inlier类logit 最小化min lpallpal 就是对于log中的 变量 最大化max 对于第一项,是像素对不同类的logit值 对于第二项,分子是像素在 Y+1 类处的logit值。(放弃预测) 针对类别c,两项就是类别c的logit值,和类别...
Learning Multiple Pixelwise Tasks Based on Loss Scale Balancing Jae-Han Lee Korea University jaehanlee@mcl.korea.ac.kr Chul Lee Dongguk University chullee@dongguk.edu Chang-Su Kim Korea University changsukim@korea.ac.kr Abstract We propose a novel loss weighting alg...
此loss的优势: 1. 没有超参数; 2. Inlier pixel数量 >> OoD pixel数量, 这种loss由于其他的loss比如hinge loss,对OoD pixel有更好的优化和收敛效果. Context-robust Contrastive Learning(CoroCL) 大部分方法难以区分, 不熟悉的inlier像素 vs 潜在的OoD像素 ...