pd.pivot_table(df,index=["Manager","Rep"],values=["Price"], columns=["Product"],aggfunc=[np.sum]) 然而,非数值(NaN)有点令人分心。如果想移除它们,我们可以使用“fill_value”将其设置为0。 pd.pivot_table(df,index=["Manager","Rep"],values=["Price"], columns=["Product"],aggfunc=[np....
pivot_table函数是pandas库中的函数,调用首先需要加载pandas库。 其功能相当于excel中的数据透视表。 其基本调用语法如下: 代码语言:javascript 复制 importpandasaspd pd.pivot_table(data:'DataFrame',values=None,index=None,columns=None,aggfunc:'AggFuncType'='mean',fill_value=None,margins:'bool'=False,dropna...
Python数据透视功能之 pivot_table()介绍 pivot_table pivot()函数没有数据聚合功能,要想实现此功能,需要调用Pandas包中的第三个顶层函数:pivot_table(),在pandas中的工程位置如下所示: pandas | pivot_table() 如下,构造一个df实例: 调用如下操作: 参数index指明A和B为行索引,columns指明C列取值为列,聚合函数...
此外,Pandas还提供了一个顶级的pandas.pivot_table函数,二者完成的功能是相同的,其函数原型如下。 pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True) pivot_table有很多参数,其中...
Pandas中pivot_table的参数fill_value是设定缺失替换值。
1.1 pivot_table参数列表: pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc=‘mean’, fill_value=None, margins=False, dropna=True, margins_name=‘All’, observed=False, sort=True) 同样可以写成: data.pivot_table(’ data列名’,index,columns,aggfunc…) ...
table=pd.pivot_table(df,index=["Manager","Status"],columns=["Product"],values=["Quantity","Price"], aggfunc={"Quantity":len,"Price":[np.sum,np.mean]},fill_value=0) table 也许,同一时间将这些东西全都放在一起会有点令人望而生畏,但是一旦你开始处理这些数据,并一步一步地添加新项目,你将...
五,透视表(pivot_table) 透视表是指按照特定的index和columns进行聚合操作之后的表,该函数和pivot函数的行为相似,只不过会对值进行聚合操作,只能处理数值属性: DataFrame.pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='...
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"], columns=["Product"],aggfunc=[np.sum]) 然而,非数值(NaN)有点令人分心。如果想移除它们,我们可以使用“fill_value”将其设置为0。 pd.pivot_table(df,index=["Manager","Rep"],values=[...
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"], columns=["Product"],aggfunc=[np.sum]) 1. 2. 然而,非数值(NaN)有点令人分心。如果想移除它们,我们可以使用“fill_value”将其设置为0。 pd.pivot_table(df,index=["Manager","Rep"],values=["Price"], ...