Pillow-SIMD是一个基于Pillow的扩展库,它通过使用CPU的SIMD(单指令流多数据流)指令集,可以显著提高图像处理的速度。SIMD是一种处理器设计技术,允许单个指令同时操作多个数据,这对于图像处理这种数据密集型的任务来说,可以大幅提高处理效率。 安装Pillow-SIMD 在开始使用Pillow-SIMD之前,首先需要安装它。可以通过pip来安装...
$ sudo apt-get install -y build-essential ccache python-dev libjpeg-dev $ git clone -b opt/scalar https://github.com/uploadcare/pillow-simd.git $ git clone --depth 10 https://github.com/python-pillow/pillow-perf.git $ cd ./pillow-simd/ # Swithching to the commit everything starts ...
uploadcare/pillow-simdPublic forked frompython-pillow/Pillow NotificationsYou must be signed in to change notification settings Fork85 Star2.1k simd/master 56Branches 149Tags Code This branch is107 commits ahead of,5684 commits behindpython-pillow/Pillow:main. ...
pil: [py-pillow] pil: [py-pillow-simd] pkgconfig: [pkgconf, pkg-config] pkgconfig: [pkgconf, pkg-config] rpc: [libtirpc] rpc: [libtirpc] scalapack: [netlib-scalapack] scalapack: [netlib-scalapack] 2 changes: 1 addition & 1 deletion 2 var/spack...
好嘛,还是被吊打... 我查了查资料,Kaggle 上有位老哥做了比较全的对比,比我严谨多了,结果也是 PIL 被吊打(https://www.kaggle.com/vfdev5/pil-vs-opencv)。还有老哥建议用优化过的Pillow-SIMD,但是貌似官方的测试结果(https://python-pillow.org/pillow-perf/)还是差 OpenCV 好多啊... well... ...
进一步比较cv2和PIL在加载图片方面的差异,我发现github.com/python-pillo... 提供了相关对比。在resize方式上,即使是使用nearest算法,两种库的计算结果也存在差异,这导致图像特征出现轻微不同,无法进行有效替换。最终,我将pillow替换为pillow simd avx2,发现所用时间仅提升了约15%,但问题仍未得到根本...
A simple thing would be to try swapping PIL out forpillow-simd. It's compatible with pillow, but many inner loops have been replaced with hand-written vector code. You can typically expecta 6x to 10x speedup for the image resizing step. ...
对比中,作者使用了512x512的彩色Lena图片。首先测试了cv2的resize速度,采用双线性插值将图片resize到1024x1024。随后尝试了PIL,对比输入输出均为PIL Image时的性能。结果显示,cv2明显优于PIL。作者查阅资料后发现,PIL在与其他数据类型转换时的额外开销影响了其性能,而优化版本的Pillow-SIMD也未显著提升...
还有老哥建议用优化过的 Pillow-SIMD,但是貌似官方的测试结果(https://python-pillow.org/pillow-perf/)还是差 OpenCV 好多啊... well... 2. 买一送一:cv2 的 BGR 我们都知道,用 cv2 打开彩色三通道图像的时候,通道的顺序是 BGR,所以比如我们用 pyplot 来显示图片的时候...
SIMD stands for "single instruction, multiple data" and its essence is in performing the same operation on multiple data points simultaneously by using multiple processing elements. Homepage: https://github.com/uploadcare/pillow-simd Benchmarks: https://python-pillow.org/pillow-perf/ Install ...