Piecewise Polynomials and Splines (1) 留个金丸待我尝 幸遇三杯酒好 况逢一朵花新 片时欢笑且相亲 明日阴晴未定1 人赞同了该文章 目录: 引例1:South African Heart Disease 引例2:Phoneme Recognition B样条 Piecewise Polynomials and Splines Natural Cubic Splines 练习题 引例1:South African Heart Diseas...
We explore some of the properties of multisplines and their relationship to piecewise polynomials. We show that instead of using wavelets to transcend resolutions, we can use the even translates of the scaling function.!6Shankar MoniPurdue Univ....
2D Piecewise Algebraic Splines for Implicit Modeling In addition, the spline basis functions created with the proposed procedure are piecewise polynomials and can be described explicitly in analytical form. As ... Q Li,T Jie - 《Acm Transactions on Graphics》 被引量: 49发表: 2009年 Counting Aff...
Although polynomials have several attractive features, polynomial interpolation of a given function often has the drawback of producing approximations that may be wildly oscillatory. To overcome this difficulty we divide the interval of interest into small subintervals and in each subinterval consider polyn...
In this paper we introduce spaces of piecewise polynomials which can be used to model space curves which have geometric continuity. We show that the basic theoretical properties of ordinary spline functions also hold for these spaces. These results extend and unify recent work on Beta-splines and...
In reconstructing volumetric data, we had to evaluate the convolution of two box splines, the computational complexity of which could be very high. To promote efficiency of reconstructing volumetric data in S42(R3, ∆3), firstly, we induce the explicit piecewise polynomials of locally supported ...
Meanwhile Schoenberg had written the paper (5) which gave birth to the theory of splines—again proposing that, for approximation and inter polation, the most convenient functions were piecewise polynomials. Certainly there was an idea whose time was coming. When it finally came, fifteen years ...
who gave a more formal definition to a spline. A mathematical spline is a piecewise function which uses polynomials of the same degree to connect a set of points (the "pegs" of old) to create a smooth curve. Splines can be a more effective way of interpolating a curve from a set of ...
The top plot shows four segments of a piecewise-polynomial signal (both the samples and the underlying continuous-time model); each segment is of the second order. The middle plot are the three basis polynomials, i.e., the diagonals of matrices Pk (in this particular case, the respective ...
We use the framework of nonuniform generalized sampling (NUGS) to do this, and to ensure high accuracy we employ reconstruction spaces consisting of splines or (piecewise) polynomials. We analyze the relation between the dimension of the reconstruction space and the bandwidth of the nonuniform ...