III类PI3K由氨基酸激活,而总活化PI3K使PIP2肌醇头的第三个碳原子磷酸化并转化为PIP3,进而通过PDK1和RAC激活AKT,而这一转化过程可被PTEN抑制。此外,IGF-1与IGF1R联合作用,可以募集IRS-1和I类PI3K,参与PIP2向PIP3的转化;mTORC2可以通过影响Akt的磷酸化进而影响Akt的活性,进而通过TSC1/2影响下游的mTORC1,而Akt和...
PI3K/AKT信号通路在肿瘤发生中广泛的激活,尤其是PIK3CA,PIK3R1,PTEN,AKT等基因存在高频突变(其中PIK3CA基因在大约36%的乳腺癌中存在突变),与肿瘤发生、发展以及耐药密切相关。 目前该通路的主要涉及的突变有: 1、PIK3CA突变 PIK3CA是肿瘤中编码 PI3K 蛋白 P110 亚基的基...
BCRs和细胞质适配器影响PI3K/Akt信号通路的激活,当B细胞缺乏BCRs时,Akt不被激活。 04 GPCRs GPCRs是最大的细胞表面蛋白家族,是PI3K/Akt信号通路的共同靶标。GPCRs通过异源三聚体G蛋白传递信号,能识别并响应不同化学配体,从而有效激活不同细胞中的PI3K/Akt信号...
PI3K-AKT信号通路是一种细胞内信号转导途径,响应细胞外信号,调节多种细胞功能,例如代谢、增殖、细胞存活、生长和血管生成等。通路涉及的关键基因是 PI3K(磷脂酰肌醇3-激酶)和AKT(蛋白激酶B),所以将这一通路命名为PI3K-AKT信号通路。它与多个通路存在直接连接,如上游的Toll like receptor、B cell receptor、JAK-STAT...
Insulin首先结合细胞表面受体通过IRS1激活PI3K-AKT通路,AKT直接促进Glucose的吸收,同时通过AKT-TSC1/2-RheB-mTORC1激活mTORC1的活性,mTORC1进一步指导合成利用glucose进行生物合成相关的酶进行营养的储存。 RheB是一种小G蛋白,小G蛋白激活后可直接调控mTORC1,介导的激素类即细胞表面信号到mTORC1,这是众多mTORC1调节方式...
PI3K/AKT/mTOR通路在细胞增值、代谢中具有重要作用,同时也是肿瘤研究中一条非常重要的信号通路,PI3K基因在许多肿瘤中突变频率都很高,其异常激活与恶性肿瘤的发生发展十分密切,并在肿瘤细胞增殖、迁移及代谢过程中扮演着重要作用。那么这个通路基因突变后会对细胞代谢产生什么样的影响?如何导致肿瘤的发生和发展?用小分子抑...
PI3K的上游通路 Class I型 PI3K 可以被多个上游通路激活。在KEGG map中,我们可以观察到多种膜受体(RTK,TLR2/4,BCR)受膜外信号激活后,可以将信号传递并激活PI3K。这些上游信号可以来源Toll-like 受体、B细胞受体、JAK/STAT等信号传导通路。所以PI3K-AKT信号通路是多个信号传导过程的下游,或者说很多信号通路非常关键...
PI3K/Akt信号通路在多种生理过程中扮演着重要角色,尤其在肿瘤的发展中起着关键作用。这个信号通路能够调控细胞存活、转移和新陈代谢,同时在血管生成和炎症因子募集中也发挥着重要作用。PI3K通过磷酸化PIP2产生PIP3,随后PIP3募集下游信号蛋白,包括丝氨酸和苏氨酸激酶Akt。激活的Akt能够磷酸化许多底物,其中mTOR是Akt最常见...
PI3K-AKT信号通路,作为一种细胞内信号传递系统,对细胞外部的信号做出响应,从而调节多种细胞功能,包括代谢、增殖、细胞存活、生长和血管生成等。该通路的核心基因是PI3K(磷脂酰肌醇3-激酶)和AKT(蛋白激酶B),因此被命名为PI3K-AKT信号通路。它与其他多个信号通路直接相连,包括上游的Toll样受体、B细胞受体、JAK-STAT信号...
PAM信号通路在细胞生存、生长和增殖中扮演关键角色,其失调是癌症发展的重要驱动因素。且PAM信号通路的过度活化是癌症耐药性形成的关键因素。例如,PI3K的过度活化、PTEN的功能丧失以及AKT的功能增强等,均是导致癌症治疗耐药和疾病进展的重要分子机制。2023年,《Mo...