自Claude Bernard 于 1855 年首次提出“信号转导”概念以来,对健康和疾病中细胞信号转导的分子复杂性的研究,刺激了疾病生物标志物、新药物靶点的发现以及创新治疗策略的开发。 “PI3K/AKT/mTOR 通路”是真核细…
PI3K/AKT/mTOR通路是一种细胞内信号传导通路,涉及磷脂酰肌醇3-激酶(PI3K)、蛋白激酶B(AKT)和哺乳动物雷帕霉素靶蛋白(mTOR)。该通路在细胞的生长、增殖、存活、代谢和迁移等过程中发挥关键作用。组成/激活机制/功能作用 PI3K PI3K(磷脂酰肌醇3-激酶)是PI3K/AKT/mTOR信号通路中的关键上游激酶,具有丝氨酸/苏...
PI3K/AKT/mTOR 通路在正常细胞内对细胞增殖、凋亡、血管生成和能量代谢等生理活动具有重要调节作用,其异常激活可抑制细胞凋亡、促进细胞的生长和增殖、促进细胞周期进展、促进血管形成及细胞代谢,并参与肿瘤细胞的侵袭和转移[1]。 图1. PI3K/AKT/mTOR 信号通路及...
Insulin首先结合细胞表面受体通过IRS1激活PI3K-AKT通路,AKT直接促进Glucose的吸收,同时通过AKT-TSC1/2-RheB-mTORC1激活mTORC1的活性,mTORC1进一步指导合成利用glucose进行生物合成相关的酶进行营养的储存。 RheB是一种小G蛋白,小G蛋白激活后可直接调控mTORC1,介导的激素类即细胞表面信号到mTORC1,这是众多mTORC1调节方式...
PAM信号通路在细胞生存、生长和增殖中扮演关键角色,其失调是癌症发展的重要驱动因素。且PAM信号通路的过度活化是癌症耐药性形成的关键因素。例如,PI3K的过度活化、PTEN的功能丧失以及AKT的功能增强等,均是导致癌症治疗耐药和疾病进展的重要分子机制。2023年,《Mo...
通过特异性阻断PI3K和mTOR,观察HepG2和Hep3B细胞株PI3K/Akt/mTOR信号通路活性及生物学行为的改变,探讨相关的分子机制。 一、PI3K简介 PI3K是细胞内重要的信号转导分子,根据PI3K的P110亚基结构特点和底物分子不同可将其分为三大类,其中第Ⅰ类 PI3K 功能最为重要,下面所述 PI3K 指的都是第Ⅰ类 PI3K。 PI3K主要...
此外,在PD患者的肿瘤上皮细胞和基质/免疫细胞中,检测到系统性PI3K/AKT/mTOR信号通路被激活,且这种激活不能单纯归因于潜在的基因组变异。这表明肿瘤细胞中CDK4/6底物的表达/激活状态,以及肿瘤上皮细胞及其周围基质/免疫细胞中独立于基因组的PI3K/AKT/mTOR信号通路的激活,可能预测HR+/HER2-晚期乳腺癌患者对CDK4/...
PI3K/AKT/mTOR信号通路则是调节生长与代谢的这样的一个关键途径。PI3K/Akt下游靶点是哺乳动物雷帕霉素靶蛋白(mTOR),而mTOR的下游转录因子则包括了HIF1α、c-Myc、FoxO等明星分子。抑癌蛋白PTEN作为磷酸酶,可使Akt去磷酸化而减少活化,可阻止所有由Akt调控的下游信号传导事件,是PI3K的负向调节因子。PI3K/AKT/...
PI3K-Akt-mTOR通路,作为细胞内至关重要的信号转导途径,涉及细胞的生长、增殖、凋亡等多个关键生物学过程。一旦该通路发生紊乱,便可能引发癌症、神经病变等多类疾病。该通路主要由PI3K、Akt、mTOR三个核心分子构成,它们之间的相互作用和调控机制异常复杂。PI3K的激活方式多样,既可以通过与生长因子受体或连接蛋白的相互...
目前在研的40多种PI3K–AKT–mTOR通路抑制剂有望在肿瘤的靶向治疗中发挥更大的作用。 PI3K–AKT–mTOR信号通路参与控制细胞代谢、运动、增殖、生长及存活等众多细胞过程,是人类癌症中最容易发生异常的信号通路之一。PIK3CA, PIK3R1, PTEN, AKT, TSC1,TSC2, LKB1, mTOR等一些通路关键基因的突变能够导致PI3K...