现有对抗工作在语义分割模型的鲁棒性上有两个问题:第一个是之前在分割上的攻击较弱,从而导致对抗训练生成的鲁棒在面对更强大的攻击时(SegPGD)时会不鲁棒,比如作者使用强大的攻击设置(即大量攻击迭代)评估之前工作中经过对抗训练的分割模型,发现鲁棒性会显着降低。SegPGD 可以进一步降低 mIoU,在 100 次攻击迭代下,Ci...
现有对抗工作在语义分割模型的鲁棒性上有两个问题:第一个是之前在分割上的攻击较弱,从而导致对抗训练生成的鲁棒在面对更强大的攻击时(SegPGD)时会不鲁棒,比如作者使用强大的攻击设置(即大量攻击迭代)评估之前工作中经过对抗训练的分割模型,发现鲁棒性会显着降低。SegPGD 可以进一步降低 mIoU,在 100 次攻击迭代下,Ci...
现有对抗工作在语义分割模型的鲁棒性上有两个问题:第一个是之前在分割上的攻击较弱,从而导致对抗训练生成的鲁棒在面对更强大的攻击时(SegPGD)时会不鲁棒,比如作者使用强大的攻击设置(即大量攻击迭代)评估之前工作中经过对抗训练的分割模型,发现鲁棒性会显着降低。SegPGD 可以进一步降低 mIoU,在 100 次攻击迭代下,Ci...