# 初始化为 n + 1 ,表示暂时还不确定,同时方便后续处理 dp: List[int] = [n + 1] * (n + 1) # 0 最少能表示成 0 个完全平方数之和 dp[0] = 0 # 遍历所有状态 i for i in range(1, n + 1): # 遍历所有小于等于 i 的完全平方数 square ,则 i 可由 i - square 转移而来。 for j in
Python3代码 classSolution:defnumSquares(self, n:int) ->int:# solution two: Lagrange's Four-square Theoremwhilen %4==0:# reduce nn /=4ifn %8==7:return4a =0whilea **2<= n: b =int((n - a **2) **0.5)ifa **2+ b **2== n:return(notnota) + (notnotb)# whether a an...
valid perfect square(leetcode) valid perfect square 题目介绍 解题方法 最近在刷leetcode, 遇到一个很easy的问题,但是用蛮力的方法,根本解不开,想着应该是数学得某个知识,这个结介绍一下。 题目介绍 这个题目就是输入一个整数,来判断它是不是一个整数的平方,虽然可以用蛮力算法来解决,但是在提价的时候会遇到...
代码如下: 1classSolution(object):2defisPerfectSquare(self, num):3"""4:type num: int5:rtype: bool6"""7left, right =0, num8whileleft <=right:9mid = (left+right) / 210ifmid ** 2 ==num:11returnTrue12elifmid ** 2 <num:13left = mid + 114else:15right = mid -116returnFalse...
publicclassSolution{/** * @param n: a positive integer * @return: An integer */publicintnumSquares(intn) {// write your code hereint[] f = newint[n +1];for(inti =0; i <= n; i++) { f[i] = i;// max square number is i itself with all 1for(intj =1; j * j <= ...
Learn how to check if a number in a list is a perfect square using Python with this comprehensive guide.
Complex Numbers in Python Complex numbers are of the form, ‘a + bj’, where a is real part floating value and b is the imaginary part floating value, and j represents the square root of −1. Example: 2.5 + 2j Number Type Conversion in Python There are a few built-in Python funct...
GivenNaxis-aligned rectangles whereN>0,determineifthey all together form an exact coverofa rectangular region.Each rectangle is representedasa bottom-left point and a top-right point.For example,a unit square is representedas[1,1,2,2].(coordinateofbottom-left pointis(1,1)and top-right point...
题目描述: Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n. For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 =...
25 is a valid perfect square True 23 is a valid perfect square False Conclusion In this post, we saw one of the coding questions that are usually asked in interviews. Let us know how you would approach this problem in the comment section below. Happy coding!