pd.read_csv 是pandas 中用于读取 CSV(逗号分隔值)文件并将其转换为 DataFrame 的函数。以下是该函数的一些主要参数及其含义: filepath_or_buffer:字符串或文件对象。这是 CSV 文件的路径或类文件对象。 sep:字符,默认为 ','。指定字段的分隔符。如果文件是用制表符分隔的,可以使用 \t。 delimiter:别名 sep...
header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉(例如本例中的2;本例中的数据1,2,4行将被作为多级标题出现,第3行数据将被丢弃,dataframe的数据从第5行开始。)。 注意:如果skip_blank_lines=True 那么header参数忽略注释行和...
data1 = pd.read_csv(r"G:\data\Kaggle\Titanic\train.csv",header=None)#可以看到表头都直接当作数据在用了data1.head() data2 = pd.read_csv(r"G:\data\Kaggle\Titanic\train.csv",index_col=["Survived","Sex"]) data2.head() data3 = pd.read_csv(r"G:\data\Kaggle\Titanic\train.csv", ...
语法:pandas.read_csv(filepath_or_buffer, sep=',', header='infer', names=None)参数:filepath_or_buffer:CSV文件的路径或URL。sep:列分隔符,默认为逗号。header:指定行号或行号列表作为列名,或使用默认的'infer'推断列名,默认为 'infer'。names:指定列名列表。示例:import pandas as pd# 从CSV文件...
pd.read_csv pandas对纯文本的读取提供了非常强力的支持,参数有四五十个。这些参数中,有的很容易被忽略,但是在实际工作中却用处很大。pd.read_csv()的格式如下: read_csv( reader: FilePathOrBuffer, *, sep: str = ..., delimiter: str | None = ..., ...
pd.read_csv参数解析 对pd.read_csv参数做如下解释: pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, ...
read_csv('filename.csv', sep=' ', header=None, usecols=['A', 'B'], skiprows=[0, 1], na_values=['N/A'], dtype={'A': str, 'B': int}) 在这个例子中,我们使用了多个参数来读取 CSV 文件:使用制表符作为分隔符、不使用标题行、只加载 ‘A’ 和‘B’ 两列、跳过前两行、将‘N/A...
data = pd.read_csv('数据集的文件路径或者URL',header=None, sep=' ', names=[]) data = pd.read_excel('数据集的文件路径或者URL',header=None, sep=' ', names=[]) ''' header为表头,默认为第0行,header = None 默认没有表头,会自动添加数字作为列数 ...
首先,我们先看一下read_csv函数有哪些参数(pandas版本号为1.2.1):pd.read_csv( filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, ...