index_col: int or sequence or False, default None 用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。 如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。 usecols: array-like, default None 返回一个数据子集,该列表中的值必须可以对应到文件中的位...
pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default**,** delimiter=None**,** header='infer’, names=NoDefault.no_default**,** index_col=None**,** usecols=None**,** squeeze=False**,** prefix=NoDefault.no_default**,** mangle_dupe_cols=True**,** dtype=None**,** engi...
>>> pd.read_csv("data.csv", parse_dates=["date"]) date temperature humidity 0 2021-07-01 95 50 1 2021-07-02 94 55 2 2021-07-03 94 56 1. 2. 3. 4. 5. 但是,我们可以在导入过程中通过将index_col参数设置为某一列可以直接指定索引列。 >>> pd.read_csv("data.csv", parse_dates...
pd.read_csv 是pandas 中用于读取 CSV(逗号分隔值)文件并将其转换为 DataFrame 的函数。以下是该函数的一些主要参数及其含义: filepath_or_buffer:字符串或文件对象。这是 CSV 文件的路径或类文件对象。 sep:字符,默认为 ','。指定字段的分隔符。如果文件是用制表符分隔的,可以使用 \t。 delimiter:别名 sep...
data3 = pd.read_csv('rating.csv', names=['user_id','book_id','rating'], index_col = "user_id") print("***用sep参数设置分隔符***") data4 = pd.read_csv('rating.csv', names=['user_id','book_id','rating'], sep=',') print("***自动补全...
本文简单介绍一下read_csv()和 to_csv()的参数,最常用的拿出来讲,较少用的请转到官方文档看。 一.pd.read_csv() 作用:将csv文件读入并转化为数据框形式。 pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, pref...
一.pd.read_csv() 1.filepath_or_buffer:(这是唯一一个必须有的参数,其它都是按需求选用的) 文件所在处的路径 2.sep: 指定分隔符,默认为逗号',' 3.delimiter: str, default None 定界符,备选分隔符(如果指定该参数,则sep参数失效) 4.header:int or list of ints, default ‘infer’ ...
在Python数据分析工具Pandas中,pd.read_csv()函数是一个核心操作,用于从CSV文件中读取数据并转化为DataFrame。这个函数提供了丰富的参数选项以适应不同场景的需求,包括文件路径、分隔符、列名处理、数据类型指定、数据读取方式等。参数详解如下:filepath_or_buffer: 可以是文件路径、URL或对象,如文件句柄...
read_csv('filename.csv', sep=' ', header=None, usecols=['A', 'B'], skiprows=[0, 1], na_values=['N/A'], dtype={'A': str, 'B': int}) 在这个例子中,我们使用了多个参数来读取 CSV 文件:使用制表符作为分隔符、不使用标题行、只加载 ‘A’ 和‘B’ 两列、跳过前两行、将‘N/A...
pd.read_csv(filepath_or_buffer, sep=’, ‘, delimiter=None, header=’infer’, names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, ...