pd.read_csv(data, index_col='年份') # 指定列名 pd.read_csv(data, index_col=['a','b']) # 多个索引 pd.read_csv(data, index_col=[0, 3]) # 按列索引指定多个索引 1 2 3 4 5 6 2.7 usecols(使用部分列) usecols: list-like or callable, optional 1 返回一个数据子集,该列表中的值...
@信息技术百科pd.read_csv参数 信息技术百科 pd.read_csv 是Pandas 库中用于读取 CSV 文件的函数,它提供了丰富的参数来配置读取过程。以下是一些常用参数的解释和用法: filepath_or_buffer:CSV 文件的路径或者文件对象,可以是本地文件路径、URL 等。 sep:分隔符,默认为逗号 ,。可以指定其他分隔符,如制表符 \t...
请使用pd.read_csv(...).to_records()替代。 返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。 squeeze : boolean, default False 如果文件值包含一列,则返回一个Series prefix : str, default None 在没有列标题时,给列添加...
read_csv(reader:FilePathOrBuffer,*,sep:str=...,delimiter:str|None=...,header:int|Sequence[int]|str=...,names:Sequence[str]|None=...,index_col:int|str|Sequence|Literal[False]|None=...,usecols:int|str|Sequence|None=...,squeeze:bool=...,prefix:str|None=...,mangle_dupe_cols:bool=...
pd.read_csv是一个Python库pandas中的函数,用于读取CSV文件并将其转换为DataFrame对象。CSV(逗号分隔值)是一种常见的文件格式,用于存储表格数据。 该函数的语法如下: 代码语言:txt 复制 pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, dtype=None)...
read_csv('filename.csv', sep=' ', header=None, usecols=['A', 'B'], skiprows=[0, 1], na_values=['N/A'], dtype={'A': str, 'B': int}) 在这个例子中,我们使用了多个参数来读取 CSV 文件:使用制表符作为分隔符、不使用标题行、只加载 ‘A’ 和‘B’ 两列、跳过前两行、将‘N/A...
read_csv中的参数 以下都是read_csv中的参数,但是根据功能我们划分为不同的类别。 基本参数 filepath_or_buffer 数据输入路径,可以是文件路径,也可以是 URL,或者实现 read 方法的任意对象。就是我们输入的第一个参数。 In [2]: pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris...
在Python数据分析工具Pandas中,pd.read_csv()函数是一个核心操作,用于从CSV文件中读取数据并转化为DataFrame。这个函数提供了丰富的参数选项以适应不同场景的需求,包括文件路径、分隔符、列名处理、数据类型指定、数据读取方式等。参数详解如下:filepath_or_buffer: 可以是文件路径、URL或对象,如文件句柄...
read_csv命令中的parse_dates参数详解 由于csv文件中日期和时间被分为了两列,pd.read_csv命令读取文件时,需指定parse_dates = [ ['Date', 'Time'] ],亦即将[ ['Date', 'Time'] ]两列的字符串先合并后解析方可。合并后的新列会以下划线'_'连接原列名命名,本例中列名为'Date_Time'。解析得到的日期格式...