在这个示例中,我们假设有一个名为 example.csv 的CSV 文件。使用 pd.read_csv 函数读取该文件后,我们将得到的 DataFrame 对象存储在变量 df 中,并打印出该 DataFrame 对象的一些基本信息,包括形状、行索引、列索引以及前几行数据。 综上所述,pd.read_csv 函数的返回类型是一个 DataFrame 对象,它是 Pandas 库...
pd.read_csv(data, dtype=np.float64) # 所有数据均为此数据类型 pd.read_csv(data, dtype={'c1':np.float64, 'c2': str}) # 指定字段的类型 pd.read_csv(data, dtype=[datetime, datetime, str, float]) # 依次指定 1 2 3 2.12 engine(引擎) engine: {‘c’, ‘python’}, optional 1 Par...
函数pd.read_csv()返回值的类型为:Series或DataFrame。()A.正确B.错误的答案是什么.用刷刷题APP,拍照搜索答疑.刷刷题(shuashuati.com)是专业的大学职业搜题找答案,刷题练习的工具.一键将文档转化为在线题库手机刷题,以提高学习效率,是学习的生产力工具
>>>df = pd.read_csv(r'C:UsersyjDesktopdata.csv' ,names=['id','姓名','性别','身高','时间'] )>>>df id 姓名 性别 身高 时间0 id name sex height time1 01 张三 F 170 2020-02-252 02 李四 M NaN 2020-02-043 03 王五 ...
filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO) 可以是URL,可用URL类型包括:http, ftp, s3和文件。对于多文件正在准备中 本地文件读取实例:://localhost/path/to/table.csv ...
read_csv中的参数 以下都是read_csv中的参数,但是根据功能我们划分为不同的类别。 基本参数 filepath_or_buffer 数据输入路径,可以是文件路径,也可以是 URL,或者实现 read 方法的任意对象。就是我们输入的第一个参数。 In [2]: pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris...
data5 = pd.read_csv('data.csv',header=None) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头时不能设置 header 为空(默认读取第一行,即header=0);数据无表头时,若不设置header,第一行数据会被视为表头,应传入...
read_csv('filename.csv', sep=' ', header=None, usecols=['A', 'B'], skiprows=[0, 1], na_values=['N/A'], dtype={'A': str, 'B': int}) 在这个例子中,我们使用了多个参数来读取 CSV 文件:使用制表符作为分隔符、不使用标题行、只加载 ‘A’ 和‘B’ 两列、跳过前两行、将‘N/A...
header:指定行号或行号列表作为列名,或使用默认的'infer'推断列名,默认为 'infer'。names:指定列名列表。示例:import pandas as pd# 从CSV文件中读取数据df = pd.read_csv('data.csv')# 打印DataFrameprint(df)输出结果: Name Age Alice 251 Bob 302 Carol 35写入CSV文件:...
pd.read_csv pandas对纯文本的读取提供了非常强力的支持,参数有四五十个。这些参数中,有的很容易被忽略,但是在实际工作中却用处很大。pd.read_csv()的格式如下: read_csv( reader: FilePathOrBuffer, *, sep: str = ..., delimiter: str | None = ..., ...