在调用pd.read_csv函数时,将skiprows参数设置为1,以跳过文件的第一行。 python df = pd.read_csv('your_file.csv', skiprows=1) 在这里,'your_file.csv'是你的CSV文件的路径。 将读取的数据保存到DataFrame对象中: 读取的数据将被自动保存到DataFrame对象df中,你可以使用这个对象进行后续的数据处理和分析。
查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头时不能设置 header 为空(默认读取第一行,即header=0);数据无表头时,若不设置header,第一行数据会被视为表头,应传入names参数设置表头名称或设置header=None。 read_csv(filepath_or_buffer: Union[ForwardRef('PathLike[str]'), str, IO[~T],...
pd.read_csv(data, dtype=np.float64) # 所有数据均为此数据类型 pd.read_csv(data, dtype={'c1':np.float64, 'c2': str}) # 指定字段的类型 pd.read_csv(data, dtype=[datetime, datetime, str, float]) # 依次指定 1 2 3 2.12 engine(引擎) engine: {‘c’, ‘python’}, optional 1 Par...
pd.read_csv是pandas库中的一个函数,用于读取CSV文件并将其转换为DataFrame对象。它具有以下参数: filepath_or_buffer:CSV文件的路径或文件对象。 sep:字段分隔符,默认为逗号。 delimiter:字段分隔符,与sep参数相同,默认为None。 header:指定哪一行作为列名,默认为0,即第一行。 skiprows:跳过指定的行数,默认为None...
不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。 返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。 squeeze: boolean, default False
csv文件的dataframe——pd.read_csv(), 视频播放量 23700、弹幕量 0、点赞数 4、投硬币枚数 0、收藏人数 0、转发人数 1, 视频作者 Ada-Xue, 作者简介 主要发布:数学思维与文化、少儿编程、发明创造、《新概念英语》背诵相关视频,相关视频:Ctrl-Enter,Ctrl-Home,R,5,C
read_csv('filename.csv', sep=' ', header=None, usecols=['A', 'B'], skiprows=[0, 1], na_values=['N/A'], dtype={'A': str, 'B': int}) 在这个例子中,我们使用了多个参数来读取 CSV 文件:使用制表符作为分隔符、不使用标题行、只加载 ‘A’ 和‘B’ 两列、跳过前两行、将‘N/A...
pd.read_csv是一个Python库pandas中的函数,用于读取CSV文件并将其转换为DataFrame对象。CSV(逗号分隔值)是一种常见的文件格式,用于存储表格数据。 该函数的语法如下:...
读取一个csv文件时,如果不需要这个文件最后5行,如何跳过 A. pd. read ___ csv', skipinitialspace=5) B. pd. read ___ csv', skipendspace=5) C. pd. read ___ csv', skipfooter=5) D. pd. read ___ csv', skiprows=5)相关知识点: 试题来源: 解析 C 反馈 收藏 ...