与PCA相比,簇的分离更加清晰,特别是对于簇1和簇2。 对于t-SNE,我们必须进行解释: V1表示味道复杂性。这里的异常值是右侧的烟熏艾莱威士忌(例如Lagavulin)和左侧复杂的高地威士忌(例如麦卡伦)。 V2表示烟熏/药用味道。 使用PCA进行监督学习 PCA是独立完成的,这一点至关重要。因此,需要遵循以下方法: 在测试数据集...
PCA是一种适用于可视化和监督学习的方法。KPCA是一种非线性降维技术。t-SNE是一种最新的非线性方法,擅长可视化数据,但缺乏PCA的可解释性和稳健性。 这可能表明以下两点之一: 尝试新的的威士忌仍有很大的潜力。 有很多种味道的组合是可能的,并且很好地结合在一起。 我倾向于选择第二种选择。为什么?在PCA图中,右...
核PCA:PCA的一种变体,允许非线性 t-SNE t分布随机邻域嵌入: 非线性降维技术 这些方法之间的关键区别在于PCA输出旋转矩阵,可以应用于任何其他矩阵以转换数据。 加载数据集 我们可以通过以下方式加载数据集: df<- read.csv(textConnection(f), header=T)# 选择变量features <- c("Body","Sweetness","Smoky","M...
PCA是一种适用于可视化和监督学习的方法。KPCA是一种非线性降维技术。t-SNE是一种最新的非线性方法,擅长可视化数据,但缺乏PCA的可解释性和稳健性。 这可能表明以下两点之一: 尝试新的的威士忌仍有很大的潜力。 有很多种味道的组合是可能的,并且很好地结合在一起。 我倾向于选择第二种选择。为什么?在PCA图中,右...
T-SNE t-SNE已成为一种非常流行的数据可视化方法。 使用t-SNE可视化数据 在这里,我们将威士忌数据集的维度降低到两个维度: 与PCA相比,簇的分离更加清晰,特别是对于簇1和簇2。 对于t-SNE,我们必须进行解释: V1表示味道复杂性。这里的异常值是右侧的烟熏艾莱威士忌(例如Lagavulin)和左侧复杂的高地威士忌(例如麦卡...
T-SNE t-SNE已成为一种非常流行的数据可视化方法。 使用t-SNE可视化数据 在这里,我们将威士忌数据集的维度降低到两个维度: 与PCA相比,簇的分离更加清晰,特别是对于簇1和簇2。 对于t-SNE,我们必须进行解释: V1表示味道复杂性。这里的异常值是右侧的烟熏艾莱威士忌(例如Lagavulin)和左侧复杂的高地威士忌(例如麦卡...
T-SNE t-SNE已成为一种非常流行的数据可视化方法。 使用t-SNE可视化数据 在这里,我们将威士忌数据集的维度降低到两个维度: 与PCA相比,簇的分离更加清晰,特别是对于簇1和簇2。 对于t-SNE,我们必须进行解释: V1表示味道复杂性。这里的异常值是右侧的烟熏艾莱威士忌(例如Lagavulin)和左侧复杂的高地威士忌(例如麦卡...
t-SNE t分布随机邻域嵌入: 非线性降维技术 这些方法之间的关键区别在于PCA输出旋转矩阵,可以应用于任何其他矩阵以转换数据。 加载数据集 我们可以通过以下方式加载数据集: 代码语言:javascript 复制 df<-read.csv(textConnection(f),header=T)# 选择变量
T-SNE t-SNE已成为一种非常流行的数据可视化方法。 使用t-SNE可视化数据 在这里,我们将威士忌数据集的维度降低到两个维度: 与PCA相比,簇的分离更加清晰,特别是对于簇1和簇2。 对于t-SNE,我们必须进行解释: V1表示味道复杂性。这里的异常值是右侧的烟熏艾莱威士忌(例如Lagavulin)和左侧复杂的高地威士忌(例如麦卡...