主成分分析(principal component analysis,PCA)是一种常用的无监督学习方法,这一方法利用正交变换把由线性相关变量(对于含两个向量 a1,a2 的向量组,它线性相关的充分必要条件是 a1,a2 的分量对应成比例,其几何意义是两向量共线)表示的观测数据转换为少数几个由线性无关变量表示的数据,线性无关的变量(特征)称为主...
正交性假设:PCA假定不同主成分之间是正交的,这在某些情况下可能不符合实际情况。 敏感性:PCA对数据的缩放和单位敏感,不同的缩放可能会导致不同的结果。因此,在应用PCA之前,通常需要对数据进行标准化。 解释性:PCA产生的主成分可能难以解释,因为它们通常是原始特征的线性组合,而这些组合可能缺乏实际意义。 总之,虽然P...
1. 监督PCA (sPCA): 在某些情况下,数据降维不仅需要考虑数据本身的变异性,还需结合响应变量(标签)信息。监督PCA正是通过这种方式,优先捕捉那些与响应变量相关性强的主成分,从而提高模型的预测性能。2. 核PCA (Kernel PCA): 针对非线性数据分布,标准PCA可能无法有效降维。核PCA通过引入核技巧,将数据映射到高...
1)PCA whitening。在利用PCA得到协方差矩阵的特征向量后,取前k个特征向量,各特征向量相互正交,此时相关性最小;再将新数据(旋转后的数据)的每一维除以标准差即得到每一维的方差为1。方差归一化: pw: PCA white。 2)ZCA whitening。首先利用协方差矩阵计算出所有的特征向量后,将所有特征向量取出,再进行方差的归一...
PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA是一个统计学过程,它通过使用正交变换将一组可能存在相关性的变量的观测值转换为一组线性不相关的变量的值,转换后的变量就是所谓的主分量。 PCA的主要思想是将n维...
主成份分析(PCA, Principal Component Analysis)有多种推导方法,最大化方差是一种比较直观的方法。比如给出一坨数据,如果你想给出一条坐标轴可以尽量清晰的描述这些数据,即更容易把它们分类,那么直观来看,肯定会选择与数据方差最大的那条直线,才能最大化数据的差异性。
主成分分析 (Principal Component Analysis,PCA) 是一种常用的无监督学习方法,这一方法利用正交变换把由线性相关变量表示的观测数据转换为少数几个由线性无关变量表示的数据,线性无关的变量称为主成分。 1 PCA 基本想法 主成分分析中,首先对给定数据进行中心化,使得数据每一变量的平均值为 0。之后对数据进行正交变换...
主成分分析(PCA),作为统计领域的重要工具,旨在通过减少数据维度来保持原始数据的主要特性,尤其在机器学习和数据可视化中扮演着关键角色。其核心目标是找出数据中变异最大的方向,并将数据投影到这些方向,以此实现降维。PCA首先通过中心化处理数据,消除特征间的偏移。接着,通过计算协方差矩阵来衡量特征间...
PCA analysis (robust)
PrincipalComponentAnalysis 主成分分析 1、概念介绍 主成分分析(PCA) 是一种对数据进行旋转变换的统计学方法,其本质是在线性空间中进行一个基变换, 使得变换后的数据投影在一组新的“坐标轴”上的方差最大化,随后,裁剪掉变换后方差很小的“坐标轴”,