然后利用主成分分析方法[21(] principal component analysis,PCA)筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由 EMD分解得到的不同波动序列的冗余性和相关性。最后,通过 LSTM 神经网络完成对多变量时间序列和光伏功率序列之间的动态时间建模,构建预测模型,最终实现对光伏输出功率的预测。与传统的 BP ...
主成分分析(PCA): PCA是一种降维技术,用于在保留数据集中大部分变异性的同时减少数据的维度。它通过正交变换将可能相关的变量转换为一组线性不相关的变量,这些不相关变量称为主成分。PCA可以提取数据中最重要的特征,减少模型的复杂度,并且有助于去除噪声。 长短期记忆网络(LSTM): LSTM是一种特殊的循环神经网络(RNN...
然后利用主成分分析方法[21(] principal component analysis,PCA)筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由 EMD分解得到的不同波动序列的冗余性和相关性。最后,通过 LSTM 神经网络完成对多变量时间序列和光伏功率序列之间的动态时间建模,构建预测模型,最终实现对光伏输出功率的预测。与传统的 BP ...
然后,我们将对IMF进行主成分分析(PCA),以降维并提取最具代表性的特征。PCA可以帮助我们减少数据的维度,去除噪音,提高模型的泛化能力。 接着,我们将使用长短期记忆网络(LSTM)来构建预测模型。LSTM是一种能够捕捉时间序列数据长期依赖关系的循环神经网络,适合处理具有时间特性的光伏功率数据。 最后,我们将对模型进行训练...
an impulsive ground-shaking identification method combined with deep learning named PCA-LSTM is proposed.Firstly,ground-shaking characteristics were analyzed and groundshaking the data was annotated using Baker'smethod.Secondly,the Principal Component Analysis(PCA)method was used to extract the most ...
然后,我们将对IMF进行主成分分析(PCA),以降维并提取最具代表性的特征。PCA可以帮助我们减少数据的维度,去除噪音,提高模型的泛化能力。 接着,我们将使用长短期记忆网络(LSTM)来构建预测模型。LSTM是一种能够捕捉时间序列数据长期依赖关系的循环神经网络,适合处理具有时间特性的光伏功率数据。
PCA-LSTM多变量回归预测(Matlab)PCA降维结合LSTM神经网络预测算法,程序注释清楚,直接运行出结果。更换数据集简单,直接运行即可 1.data是数据集 2.PCALSTM是程序文件;3.环境需要在MATLAB2018及以上版本运行 4.所有程序都经过验证,保证可以运行 标题:PCA-LSTM多变量回归预测算法及其在MATLAB中的应用 摘要:本文介绍...
完整程序和数据下载:MATLAB实现PCA-LSTM(主成分长短期记忆神经网络)多输入单输出 PCA程序设计 clc; clear; warning off; data = xlsread('data.xlsx', 'Sheet1', 'A3:M1250'); x=data(:,1:12); y=data(:,13); % 求因子维度 [r,c]=size(x); ...
将PCA-LSTM模型与非线性自回归(NAR)神经网络的预测结果进行对比,结果表明,基于PCA-LSTM的滚动轴承退化趋势预测模型与NAR神经网络相比,均方根误差和平均绝对百分比误差分别提高了9.1%和8.0163%,预测精度更高,为滚动轴承的退化趋势预测提供了一种新的思路。 英文摘要:...
基于多层网格搜索的PCA-LSTM轴承剩余寿命预测方法.pdf,本发明公开了一种基于多层网格搜索的PCA‑LSTM轴承剩余寿命预测方法,首先提取轴承故障时间序列数据的多个时频域特征,采用PCA融合多个特征指标量并去除特征指标的冗余数据,得到所需的影响故障主成分数据即一组新的