来自Northeastern University 及University of California, Riverside等大学的研究者发表了“Parameter-Efficient Fine-Tuning for Large models: A Comprehensive Survey”对PEFT技术进行全面综述,探讨各种PEFT算法及其应用,为研究人员提供深入的理解。 论文地址:https://arxiv.org/abs/2403.14608 以下为论文主要内容: 一、...
在一篇综述文章《Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning》中,将PEFT方法归为四类—— 1、Additive methods:最大且应用最广泛的一类方法。这类方法通过额外参数或者layer,扩大预训练模型的规模,仅仅训练新增的参数。 2、Selective methods:微调一个网络的部分参数。 3、Reparametrizati...
Parameter-efficient fine-tuning (PEFT) is a method of improving the performance of pretrained large language models (LLMs) and neural networks for specific tasks or data sets. By training a small set of parameters and preserving most of the large pretrained model’s structure, PEFT saves time ...
为了解决这个问题,PEFT库(Parameter-Efficient Fine-Tuning)应运而生。PEFT库是一种用于高效微调预训练语言模型的库。它的基本原理是不需要微调所有的模型参数,而是只微调少量的额外参数,从而显著降低计算和存储成本。通过只微调少量参数,PEFT库可以在不牺牲性能的情况下,实现大规模模型的快速适应。PEFT库的实现方法主要...
为此,PEFT(Parameter-Efficient Fine-Tuning)技术应运而生。PEFT是一种参数高效的微调方法,旨在在保持模型泛化能力的同时,仅通过微小的参数调整来适应特定任务。这种方法的核心思想是在微调过程中限制新引入的参数数量,从而减少过拟合的风险。一、PEFT的工作原理PEFT的基本思想是在微调过程中对预训练模型的参数进行限制,...
在探讨大模型领域,Parameter-Efficient Fine-Tuning(PEFT)技术成为了解决预训练模型应用成本问题的关键。通过PEFT,我们能够在保持原有预训练模型性能的基础上,显著减少微调参数的数量和计算复杂度。这一技术的核心理念是,利用预训练模型中大部分参数保持不变,仅微调其中的一小部分,以此来实现参数效率。...
大模型时代的热门话题,即如何高效地将通用预训练大语言模型适配到各种下游任务中,一种技术叫Parameter-Efficient Fine-Tuning (PEFT)。PEFT旨在提高微调效率,通过少量参数调整,使预训练模型适应特定任务,降低存储与部署成本,实现大模型在不同垂直场景的高效应用。PEFT技术具有以下应用特性:通过在模型内部...
PEFT Training with NeMo Megatron Launcher PEFT stage could launch PEFT methods including PTuning, LoRA, Adapters and IA3 in a single stage, by setting different peft scheme. It is implemented via adapter_mixins framework with a unify style. mix-n-match PEFT scheme like adapter_and_ptunin...
Index Terms: Large Language Model, Parameter-Efficient Fine-tuning, Computer System, Distributed System. 关键词:大型语言模型、参数高效微调、计算机系统、分布式系统。 1、Introduction Large Models (LMs) have recently captured considerable public interest. Their ability to understand context and nuances enable...
Recently many parameter-efficient fine-tuning (PEFT) methods have been proposed, and their experiments demonstrate that tuning only 1% extra parameters could surpass full fine-tuning in low-data resource scenarios. However, these methods overlook the task-specific information when fine-tuning diverse ...