Pandas value_counts() 的不同用例。 数据科学家通常将大部分时间花在探索和预处理数据上。当谈到数据分析和理解数据结构时,Pandas value_counts() 是最受欢迎的函数之一。该函数返回一个包含唯一值计数的系列。生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨
Series.value_counts() 参数 图源:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.value_counts.html 基本用法 作者通过以下数据集来观察 value-count () 函数的基本用法,其中 Demo 中使用了 Titanic 数据集。她还在 Kaggle 上发布了一个配套的 notebook。 代码链接:https://www.kag...
在pandas中,value_counts()和counts()是用于计数的两个常用函数。它们都可以对DataFrame或Series中的元素进行计数,但使用方法和应用场景有所不同。一、value_counts()函数value_counts()函数用于计算DataFrame或Series中各个唯一元素的数量。它会按照元素出现次数降序排列,并返回一个Series对象。基本语法如下: pandas.Seri...
df['A'].value_counts(sort=False, ascending=True, normalize=True, bins=2, range=[0, 5]) 三、应用实例下面是一个更复杂的应用实例,演示了如何在实际数据分析中使用value_counts()函数:假设我们有一个包含用户购买记录的DataFrame,其中包含用户ID、购买商品和购买时间等列。我们想要了解每种商品的销售情况,...
pandas | value_counts()的用法 value_counts()方法返回一个序列Series,该序列用于统计某列中各个值的出现次数的函数。当配合参数bins使用时,它可以将数据分成指定的区间,然后统计每个区间内值的出现次数。 value_counts()是Series拥有的方法,一般在DataFrame中使用时,需要指定对哪一列或行使用。value_counts()只能...
Pandas value_counts() 可用于使用 bin 参数将连续数据分入离散区间。与 Pandas cut() 函数类似,我们可以将整数或列表传递给 bin 参数。 当整数传递给 bin 时,该函数会将连续值离散化为大小相等的 bin,例如: >>> df['Fare'].value_counts(b...
Pandas value_counts() 返回一个Series,包括前面带有 MultiIndex 的示例。 如果我们希望我们的结果显示为 DataFrame,我们可以在 value_count() 之后调用 to_frame()。 >>> df.groupby('Embarked')['Sex'].value_counts().to_frame() 9、应用于DataFrame 到目前为止,我们一直将 value_counts() 应用于 Pandas...
A. value _ c< underline>oun< /underline>ts()结果是一个Series B. value < underline>_ c< /underline>ounts()结果自动按值排序 C. value _< underline> co< /underline>unts()能实现分组统计功能 D. value < underline>_ c< /underline>ounts()结果自动按索引排序...
value_counts() 方法返回一个序列 Series,该序列包含每个值的数量。也就是说,对于数据框中的任何列,value-counts () 方法会返回该列每个项的计数。 语法 Series.value_counts() 参数 图源:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas...
importseabornassnssns.barplot(y=df['折扣'].value_counts().values,x=df['折扣'].value_counts().index)<AxesSubplot:> 这是因为 value_counts 函数返回的是一个 Series 结果,而 pandas 直接画图之前,无法自动地对索引先进行排序,而 seaborn 则可以。 如果想坚持使用pandas(背后是matplotlib)画图,那么可以先...