如果我们希望我们的结果显示为 DataFrame,我们可以在 value_count() 之后调用 to_frame()。 >>> df.groupby('Embarked')['Sex'].value_counts().to_frame() 9、应用于DataFrame 到目前为止,我们一直将 value_counts() 应用于 Pandas Series,在 Pandas DataFrame 中有一个等效的方法。 Pandas DataFrame.value_...
>>> df.groupby('Embarked')['Sex'].value_counts().to_frame() 9、应用于DataFrame 到目前为止,我们一直将 value_counts() 应用于 Pandas Series,在 Pandas DataFrame 中有一个等效的方法。Pandas DataFrame.value_counts() 返回一个包含 Data...
语法-df['your_column'].value_counts() 我们将从我们的数据框中获取Course_difficulty列的计数。 # count of all unique values for the column course_difficultydf['course_difficulty'].value_counts() value_counts函数的基本用法 该value_counts函数以降序返回给定索引中所有唯一值的计数,不包含任何空值。我们...
Pandas value_counts() 返回一个Series,包括前面带有 MultiIndex 的示例。 如果我们希望我们的结果显示为 DataFrame,我们可以在 value_count() 之后调用 to_frame()。 >>> df.groupby('Embarked')['Sex'].value_counts().to_frame() 9、应用于DataFrame 到目前为止,我们一直将 value_counts() 应用于 Pandas ...
Pandas value_counts() 返回一个Series,包括前面带有 MultiIndex 的示例。如果我们希望我们的结果显示为 DataFrame,我们可以在 value_count() 之后调用 to_frame()。 代码语言:javascript 复制 >>>df.groupby('Embarked')['Sex'].value_counts().to_frame() ...
Pandas value_counts() 返回一个Series,包括前面带有 MultiIndex 的示例。如果我们希望我们的结果显示为 DataFrame,我们可以在 value_count() 之后调用 to_frame()。 y('Embarked')['Sex'].value_counts().to_frame() 9、应用于DataFrame 到目前为止,我们一直将 value_counts() 应用于 Pandas Series,在 Pandas...
就像之前提到的@jezrael, Pandas 提供API pd.Series.to_frame。 步骤1 您也可以将 pd.Series 包装到 pd.DataFrame 只需做 df_val_counts = pd.DataFrame(value_counts) # wrap pd.Series to pd.DataFrame 然后,你有一个 pd.DataFrame 列名'a' ,你的第一列成为索引 Input: print(df_value_counts.index...
dfx=modify(1,1414)(dfx.groupby('item_name')['choice_description'].value_counts().to_frame()) 注意我们这次把行索引1的记录修改为nan 这里可以发现,其实大部分的表(DataFrame)或列(Series)的操作都能用于分组操作 现在希望使用组内出现频率最高的值来填充组内的缺失值: ...
df['Embarked'].value_counts(normalize = True) output S 72.44% C 18.90% Q 8.66% Name: Embarked, dtype: float64 当然除此之外,我们还可以这么来做,代码如下 df['Embarked'].value_counts(normalize = True).to_frame.style.format('{:.2%}') ...
df['Embarked'].value_counts(normalize = True) output S 72.44% C 18.90% Q 8.66% Name: Embarked, dtype: float64 当然除此之外,我们还可以这么来做,代码如下 df['Embarked'].value_counts(normalize = True).to_frame().style.format('{:.2%}') ...