to_numeric主要用于将字符串或其他非数值类型的序列转换为数值类型。相比于astype,它具有更好的容错能力。其基本语法如下: 代码语言:python 代码运行次数:0 运行 AI代码解释 pd.to_numeric(arg,errors='raise',downcast=None) arg: 要转换的对象,可以是列表、元组、Series等。 errors: 错误处理方式,同astype。 dow...
我们可以使用to_numeric来进行转换: importpandasaspd data={'amount':['1,234.56','2,345.67','abc','3,456.78']}df=pd.DataFrame(data)# 去除逗号并尝试转换为数值类型df['amount_cleaned']=df['amount'].str.replace(',','').apply(pd.to_numeric,errors='coerce') 在这个例子中,首先通过字符串操...
Pandas的astype()函数和复杂的自定函数之间有一个中间段,那就是Pandas的一些辅助函数。 3.1to_numeric # 定义转换前数据 df = pd.DataFrame({'a': [2, np.nan, 5]}) 转换前数据 # 数据转换,如遇到NaN数据时,用0来填充 df['a_int'] = pd.to_numeric(df['a'], errors='coerce').fillna(0) 红...
我们可以使用to_numeric来进行转换: importpandasaspd data={'amount':['1,234.56','2,345.67','abc','3,456.78']}df=pd.DataFrame(data)# 去除逗号并尝试转换为数值类型df['amount_cleaned']=df['amount'].str.replace(',','').apply(pd.to_numeric,errors='coerce') 1. 2. 3. 4. 5. 6. 7....
数值类型包括int和float。 转换数据类型比较通用的方法可以用astype进行转换。 pandas中有种非常便利的方法to_numeric()可以将其它数据类型转换为数值类型。 pandas.to_numeric(arg, errors='raise', downcast=None) arg:被转换的变量,格式可以是list,tuple,1-d array,Series ...
importpandasaspd# 创建一个包含浮动数据的Seriesdata = pd.Series([1.5,2.5,3.5,4.5])# 使用 pd.to_numeric() 方法将数据转换为整数,并且下行缩减内存numeric_data = pd.to_numeric(data, downcast='integer')# 输出转换后的结果print(numeric_data) ...
验证转换后的数据类型是否为int: 转换完成后,你可以通过查看DataFrame的列数据类型来验证转换是否成功。 python # 查看转换后的数据类型 print(df.dtypes) 如果转换成功,你应该会看到numbers列的数据类型变为了int64。 总结来说,使用pd.to_numeric()函数是处理pandas中字符串到整数转换的有效方法。同时,通过设置errors...
to_numeric主要用于将字符串或其他非数值类型的序列转换为数值类型。相比于astype,它具有更好的容错能力。其基本语法如下: pd.to_numeric(arg, errors='raise', downcast=None) arg: 要转换的对象,可以是列表、元组、Series等。 errors: 错误处理方式,同astype。
数值类型包括int和float。 转换数据类型比较通用的方法可以用astype进行转换。 pandas中有种非常便利的方法to_numeric()可以将其它数据类型转换为数值类型。 pandas.to_numeric(arg, errors='raise', downcast=None) arg:被转换的变量,格式可以是list,tuple,1-d array,Series errors:转换时遇到错误的设置,ignore, ra...
pd.to_numeric(s)01.012.023.0dtype: float64 这里使用float64,因为"2.0"在底层被转换为float而不是int。 我们可以通过传入downcast="float"将其转换为float32,如下所示: s = pd.Series(["1.","2.0",3]) pd.to_numeric(s, downcast="float")01.012.023.0dtype: float32 ...